bl双性强迫侵犯h_国产在线观看人成激情视频_蜜芽188_被诱拐的少孩全彩啪啪漫画

Python使用numpy實現BP神經網絡-創新互聯

本文完全利用numpy實現一個簡單的BP神經網絡,由于是做regression而不是classification,因此在這里輸出層選取的激勵函數就是f(x)=x。BP神經網絡的具體原理此處不再介紹。

創新互聯公司成立于2013年,我們提供高端成都網站建設公司成都網站制作網站設計、網站定制、成都全網營銷推廣微信小程序、微信公眾號開發、網站推廣服務,提供專業營銷思路、內容策劃、視覺設計、程序開發來完成項目落地,為成都人造霧企業提供源源不斷的流量和訂單咨詢。
import numpy as np 
 
class NeuralNetwork(object): 
  def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): 
    # Set number of nodes in input, hidden and output layers.設定輸入層、隱藏層和輸出層的node數目 
    self.input_nodes = input_nodes 
    self.hidden_nodes = hidden_nodes 
    self.output_nodes = output_nodes 
 
    # Initialize weights,初始化權重和學習速率 
    self.weights_input_to_hidden = np.random.normal(0.0, self.hidden_nodes**-0.5,  
                    ( self.hidden_nodes, self.input_nodes)) 
 
    self.weights_hidden_to_output = np.random.normal(0.0, self.output_nodes**-0.5,  
                    (self.output_nodes, self.hidden_nodes)) 
    self.lr = learning_rate 
     
    # 隱藏層的激勵函數為sigmoid函數,Activation function is the sigmoid function 
    self.activation_function = (lambda x: 1/(1 + np.exp(-x))) 
   
  def train(self, inputs_list, targets_list): 
    # Convert inputs list to 2d array 
    inputs = np.array(inputs_list, ndmin=2).T  # 輸入向量的shape為 [feature_diemension, 1] 
    targets = np.array(targets_list, ndmin=2).T  
 
    # 向前傳播,Forward pass 
    # TODO: Hidden layer 
    hidden_inputs = np.dot(self.weights_input_to_hidden, inputs) # signals into hidden layer 
    hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer 
 
     
    # 輸出層,輸出層的激勵函數就是 y = x 
    final_inputs = np.dot(self.weights_hidden_to_output, hidden_outputs) # signals into final output layer 
    final_outputs = final_inputs # signals from final output layer 
     
    ### 反向傳播 Backward pass,使用梯度下降對權重進行更新 ### 
     
    # 輸出誤差 
    # Output layer error is the difference between desired target and actual output. 
    output_errors = (targets_list-final_outputs) 
 
    # 反向傳播誤差 Backpropagated error 
    # errors propagated to the hidden layer 
    hidden_errors = np.dot(output_errors, self.weights_hidden_to_output)*(hidden_outputs*(1-hidden_outputs)).T 
 
    # 更新權重 Update the weights 
    # 更新隱藏層與輸出層之間的權重 update hidden-to-output weights with gradient descent step 
    self.weights_hidden_to_output += output_errors * hidden_outputs.T * self.lr 
    # 更新輸入層與隱藏層之間的權重 update input-to-hidden weights with gradient descent step 
    self.weights_input_to_hidden += (inputs * hidden_errors * self.lr).T 
  
  # 進行預測   
  def run(self, inputs_list): 
    # Run a forward pass through the network 
    inputs = np.array(inputs_list, ndmin=2).T 
     
    #### 實現向前傳播 Implement the forward pass here #### 
    # 隱藏層 Hidden layer 
    hidden_inputs = np.dot(self.weights_input_to_hidden, inputs) # signals into hidden layer 
    hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer 
     
    # 輸出層 Output layer 
    final_inputs = np.dot(self.weights_hidden_to_output, hidden_outputs) # signals into final output layer 
    final_outputs = final_inputs # signals from final output layer  
     
    return final_outputs 

另外有需要云服務器可以了解下創新互聯scvps.cn,海內外云服務器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務器、裸金屬服務器、高防服務器、香港服務器、美國服務器、虛擬主機、免備案服務器”等云主機租用服務以及企業上云的綜合解決方案,具有“安全穩定、簡單易用、服務可用性高、性價比高”等特點與優勢,專為企業上云打造定制,能夠滿足用戶豐富、多元化的應用場景需求。

當前題目:Python使用numpy實現BP神經網絡-創新互聯
標題URL:http://vcdvsql.cn/article0/eijoo.html

成都網站建設公司_創新互聯,為您提供小程序開發網站導航營銷型網站建設企業網站制作企業建站服務器托管

廣告

聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯

成都網站建設公司