這篇文章主要介紹了如何將labelme格式數據轉化為標準的coco數據集格式方式,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。
創新互聯公司于2013年創立,是專業互聯網技術服務公司,擁有項目網站建設、成都網站建設網站策劃,項目實施與項目整合能力。我們以讓每一個夢想脫穎而出為使命,1280元田林做網站,已為上家服務,為田林各地企業和個人服務,聯系電話:18980820575labelme標注圖像生成的json格式:
{ "version": "3.11.2", "flags": {}, "shapes": [# 每個對象的形狀 { # 第一個對象 "label": "malignant", "line_color": null, "fill_color": null, "points": [# 邊緣是由點構成,將這些點連在一起就是對象的邊緣多邊形 [ 371, # 第一個點 x 坐標 257 # 第一個點 y 坐標 ], ... [ 412, 255 ] ], "shape_type": "polygon" # 形狀類型:多邊形 }, { "label": "malignant", # 第一個對象的標簽 "line_color": null, "fill_color": null, "points": [# 第二個對象 [ 522, 274 ], ... [ 561, 303 ] ], "shape_type": "polygon" }, { "label": "malignant", # 第二個對象的標簽 "line_color": null, "fill_color": null, "imagePath": "../../val2017/000001.jpg", # 原始圖片的路徑 "imageData":"something too long ",# 原圖像數據 通過該字段可以解析出原圖像數據 "imageHeight": 768, "imageWidth": 1024 }
coco標準數據集格式:
COCO通過大量使用Amazon Mechanical Turk來收集數據。COCO數據集現在有3種標注類型:object instances(目標實例), object keypoints(目標上的關鍵點), and image captions(看圖說話),使用JSON文件存儲。
基本的JSON結構體類型
這3種類型共享下面所列的基本類型,包括image、categories、annotation類型。
Images類型:
"images": [ { "height": 768, "width": 1024, "id": 1, #圖片id "file_name": "000002.jpg" } ]
categories類型:
"categories": [ { "supercategory": "Cancer", #父類 "id": 1, #標簽類別id,0表示背景 "name": "benign" #子類 }, { "supercategory": "Cancer", "id": 2, "name": "malignant" } ],
annotations類型:
"annotations": [ { "segmentation": [#坐標點的坐標值 [ 418, 256, 391, 293, 406, 323, 432, 340, 452, 329, 458, 311, 458, 286, 455, 277, 439, 264, 418, 293, 391, 256 ] ], "iscrowd": 0, #單個的對象(iscrowd=0)可能需要多個polygon來表示 "image_id": 1, #和image的id保持一致 "bbox": [ #標注的邊框值 bbox是將segmentation包起來的水平矩形 391.0, 256.0, 67.0, 84.0 ], "area": 5628.0, #標注的邊框面積 "category_id": 1, #所屬類別id "id": 1 #標注邊框的id : 1,2,3...,n } ]
labelme 轉化為coco
# -*- coding:utf-8 -*- # !/usr/bin/env python import argparse import json import matplotlib.pyplot as plt import skimage.io as io import cv2 from labelme import utils import numpy as np import glob import PIL.Image class MyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() else: return super(MyEncoder, self).default(obj) class labelme2coco(object): def __init__(self, labelme_json=[], save_json_path='./tran.json'): ''' :param labelme_json: 所有labelme的json文件路徑組成的列表 :param save_json_path: json保存位置 ''' self.labelme_json = labelme_json self.save_json_path = save_json_path self.images = [] self.categories = [] self.annotations = [] # self.data_coco = {} self.label = [] self.annID = 1 self.height = 0 self.width = 0 self.save_json() def data_transfer(self): for num, json_file in enumerate(self.labelme_json): with open(json_file, 'r') as fp: data = json.load(fp) # 加載json文件 self.images.append(self.image(data, num)) for shapes in data['shapes']: label = shapes['label'] if label not in self.label: self.categories.append(self.categorie(label)) self.label.append(label) points = shapes['points']#這里的point是用rectangle標注得到的,只有兩個點,需要轉成四個點 #points.append([points[0][0],points[1][1]]) #points.append([points[1][0],points[0][1]]) self.annotations.append(self.annotation(points, label, num)) self.annID += 1 def image(self, data, num): image = {} img = utils.img_b64_to_arr(data['imageData']) # 解析原圖片數據 # img=io.imread(data['imagePath']) # 通過圖片路徑打開圖片 # img = cv2.imread(data['imagePath'], 0) height, width = img.shape[:2] img = None image['height'] = height image['width'] = width image['id'] = num + 1 #image['file_name'] = data['imagePath'].split('/')[-1] image['file_name'] = data['imagePath'][3:14] self.height = height self.width = width return image def categorie(self, label): categorie = {} categorie['supercategory'] = 'Cancer' categorie['id'] = len(self.label) + 1 # 0 默認為背景 categorie['name'] = label return categorie def annotation(self, points, label, num): annotation = {} annotation['segmentation'] = [list(np.asarray(points).flatten())] annotation['iscrowd'] = 0 annotation['image_id'] = num + 1 # annotation['bbox'] = str(self.getbbox(points)) # 使用list保存json文件時報錯(不知道為什么) # list(map(int,a[1:-1].split(','))) a=annotation['bbox'] 使用該方式轉成list annotation['bbox'] = list(map(float, self.getbbox(points))) annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3] # annotation['category_id'] = self.getcatid(label) annotation['category_id'] = self.getcatid(label)#注意,源代碼默認為1 annotation['id'] = self.annID return annotation def getcatid(self, label): for categorie in self.categories: if label == categorie['name']: return categorie['id'] return 1 def getbbox(self, points): # img = np.zeros([self.height,self.width],np.uint8) # cv2.polylines(img, [np.asarray(points)], True, 1, lineType=cv2.LINE_AA) # 畫邊界線 # cv2.fillPoly(img, [np.asarray(points)], 1) # 畫多邊形 內部像素值為1 polygons = points mask = self.polygons_to_mask([self.height, self.width], polygons) return self.mask2box(mask) def mask2box(self, mask): '''從mask反算出其邊框 mask:[h,w] 0、1組成的圖片 1對應對象,只需計算1對應的行列號(左上角行列號,右下角行列號,就可以算出其邊框) ''' # np.where(mask==1) index = np.argwhere(mask == 1) rows = index[:, 0] clos = index[:, 1] # 解析左上角行列號 left_top_r = np.min(rows) # y left_top_c = np.min(clos) # x # 解析右下角行列號 right_bottom_r = np.max(rows) right_bottom_c = np.max(clos) # return [(left_top_r,left_top_c),(right_bottom_r,right_bottom_c)] # return [(left_top_c, left_top_r), (right_bottom_c, right_bottom_r)] # return [left_top_c, left_top_r, right_bottom_c, right_bottom_r] # [x1,y1,x2,y2] return [left_top_c, left_top_r, right_bottom_c - left_top_c, right_bottom_r - left_top_r] # [x1,y1,w,h] 對應COCO的bbox格式 def polygons_to_mask(self, img_shape, polygons): mask = np.zeros(img_shape, dtype=np.uint8) mask = PIL.Image.fromarray(mask) xy = list(map(tuple, polygons)) PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1) mask = np.array(mask, dtype=bool) return mask def data2coco(self): data_coco = {} data_coco['images'] = self.images data_coco['categories'] = self.categories data_coco['annotations'] = self.annotations return data_coco def save_json(self): self.data_transfer() self.data_coco = self.data2coco() # 保存json文件 json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4, cls=MyEncoder) # indent=4 更加美觀顯示 labelme_json = glob.glob('./Annotations/*.json') # labelme_json=['./Annotations/*.json'] labelme2coco(labelme_json, './json/test.json')
感謝你能夠認真閱讀完這篇文章,希望小編分享的“如何將labelme格式數據轉化為標準的coco數據集格式方式”這篇文章對大家有幫助,同時也希望大家多多支持創新互聯成都網站設計公司,關注創新互聯成都網站設計公司行業資訊頻道,更多相關知識等著你來學習!
另外有需要云服務器可以了解下創新互聯scvps.cn,海內外云服務器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務器、裸金屬服務器、網站設計器、香港服務器、美國服務器、虛擬主機、免備案服務器”等云主機租用服務以及企業上云的綜合解決方案,具有“安全穩定、簡單易用、服務可用性高、性價比高”等特點與優勢,專為企業上云打造定制,能夠滿足用戶豐富、多元化的應用場景需求。
網站題目:如何將labelme格式數據轉化為標準的coco數據集格式方式-創新互聯
網站網址:http://vcdvsql.cn/article10/hcido.html
成都網站建設公司_創新互聯,為您提供網站設計公司、App設計、云服務器、品牌網站制作、響應式網站、網站排名
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯