這篇文章主要講解了“Flume接入Hive數(shù)倉的搭建流程”,文中的講解內(nèi)容簡單清晰,易于學(xué)習(xí)與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學(xué)習(xí)“Flume接入Hive數(shù)倉的搭建流程”吧!
10年的永泰網(wǎng)站建設(shè)經(jīng)驗(yàn),針對設(shè)計、前端、開發(fā)、售后、文案、推廣等六對一服務(wù),響應(yīng)快,48小時及時工作處理。全網(wǎng)營銷推廣的優(yōu)勢是能夠根據(jù)用戶設(shè)備顯示端的尺寸不同,自動調(diào)整永泰建站的顯示方式,使網(wǎng)站能夠適用不同顯示終端,在瀏覽器中調(diào)整網(wǎng)站的寬度,無論在任何一種瀏覽器上瀏覽網(wǎng)站,都能展現(xiàn)優(yōu)雅布局與設(shè)計,從而大程度地提升瀏覽體驗(yàn)。創(chuàng)新互聯(lián)從事“永泰網(wǎng)站設(shè)計”,“永泰網(wǎng)站推廣”以來,每個客戶項目都認(rèn)真落實(shí)執(zhí)行。
實(shí)時流接入數(shù)倉,基本在大公司都會有,在Flume1.8以后支持taildir source, 其有以下幾個特點(diǎn),而被廣泛使用:
使用正則表達(dá)式匹配目錄中的文件名
監(jiān)控的文件中,一旦有數(shù)據(jù)寫入,F(xiàn)lume就會將信息寫入到指定的Sink
高可靠,不會丟失數(shù)據(jù)
不會對跟蹤文件有任何處理,不會重命名也不會刪除
不支持Windows,不能讀二進(jìn)制文件。支持按行讀取文本文件
本文以開源Flume流為例,介紹流接入HDFS ,后面在其上面建立ods層外表。
1.1 taildir source配置
a1.sources.r1.type = TAILDIR a1.sources.r1.positionFile = /opt/hoult/servers/conf/startlog_position.json a1.sources.r1.filegroups = f1 a1.sources.r1.filegroups.f1 =/opt/hoult/servers/logs/start/.*log
1.2 hdfs sink 配置
a1.sinks.k1.type = hdfs a1.sinks.k1.hdfs.path = /user/data/logs/start/logs/start/%Y-%m-%d/ a1.sinks.k1.hdfs.filePrefix = startlog. # 配置文件滾動方式(文件大小32M) a1.sinks.k1.hdfs.rollSize = 33554432 a1.sinks.k1.hdfs.rollCount = 0 a1.sinks.k1.hdfs.rollInterval = 0 a1.sinks.k1.hdfs.idleTimeout = 0 a1.sinks.k1.hdfs.minBlockReplicas = 1 # 向hdfs上刷新的event的個數(shù) a1.sinks.k1.hdfs.batchSize = 100 # 使用本地時間 a1.sinks.k1.hdfs.useLocalTimeStamp = true
1.3 Agent的配置
a1.sources = r1 a1.sinks = k1 a1.channels = c1 # taildir source a1.sources.r1.type = TAILDIR a1.sources.r1.positionFile = /opt/hoult/servers/conf/startlog_position.json a1.sources.r1.filegroups = f1 a1.sources.r1.filegroups.f1 = /user/data/logs/start/.*log # memorychannel a1.channels.c1.type = memory a1.channels.c1.capacity = 100000 a1.channels.c1.transactionCapacity = 2000 # hdfs sink a1.sinks.k1.type = hdfs a1.sinks.k1.hdfs.path = /opt/hoult/servers/logs/start/%Y-%m-%d/ a1.sinks.k1.hdfs.filePrefix = startlog. # 配置文件滾動方式(文件大小32M) a1.sinks.k1.hdfs.rollSize = 33554432 a1.sinks.k1.hdfs.rollCount = 0 a1.sinks.k1.hdfs.rollInterval = 0 a1.sinks.k1.hdfs.idleTimeout = 0 a1.sinks.k1.hdfs.minBlockReplicas = 1 # 向hdfs上刷新的event的個數(shù) a1.sinks.k1.hdfs.batchSize = 1000 # 使用本地時間 a1.sinks.k1.hdfs.useLocalTimeStamp = true # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
/opt/hoult/servers/conf/flume-log2hdfs.conf
1.4 啟動
flume-ng agent --conf-file /opt/hoult/servers/conf/flume-log2hdfs.conf -name a1 -Dflume.roog.logger=INFO,console export JAVA_OPTS="-Xms4000m -Xmx4000m -Dcom.sun.management.jmxremote" # 要想使配置文件生效,還要在命令行中指定配置文件目錄 flume-ng agent --conf /opt/hoult/servers/flume-1.9.0/conf --conf-file /opt/hoult/servers/conf/flume-log2hdfs.conf -name a1 -Dflume.roog.logger=INFO,console
要$FLUME_HOME/conf/flume-env.sh加下面的參數(shù),否則會報錯誤如下:
1.5 使用自定義攔截器解決Flume Agent替換本地時間為日志里面的時間戳
使用netcat source → logger sink來測試
# a1是agent的名稱。source、channel、sink的名稱分別為:r1 c1 k1 a1.sources = r1 a1.channels = c1 a1.sinks = k1 # source a1.sources.r1.type = netcat a1.sources.r1.bind = linux121 a1.sources.r1.port = 9999 a1.sources.r1.interceptors = i1 a1.sources.r1.interceptors.i1.type = com.hoult.flume.CustomerInterceptor$Builder # channel a1.channels.c1.type = memory a1.channels.c1.capacity = 10000 a1.channels.c1.transactionCapacity = 100 # sink a1.sinks.k1.type = logger # source、channel、sink之間的關(guān)系 a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
攔截器主要代碼如下:
public class CustomerInterceptor implements Interceptor { private static DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyyMMdd"); @Override public void initialize() { } @Override public Event intercept(Event event) { // 獲得body的內(nèi)容 String eventBody = new String(event.getBody(), Charsets.UTF_8); // 獲取header的內(nèi)容 Map<String, String> headerMap = event.getHeaders(); final String[] bodyArr = eventBody.split("\\s+"); try { String jsonStr = bodyArr[6]; if (Strings.isNullOrEmpty(jsonStr)) { return null; } // 將 string 轉(zhuǎn)成 json 對象 JSONObject jsonObject = JSON.parseObject(jsonStr); String timestampStr = jsonObject.getString("time"); //將timestamp 轉(zhuǎn)為時間日期類型(格式 :yyyyMMdd) long timeStamp = Long.valueOf(timestampStr); String date = formatter.format(LocalDateTime.ofInstant(Instant.ofEpochMilli(timeStamp), ZoneId.systemDefault())); headerMap.put("logtime", date); event.setHeaders(headerMap); } catch (Exception e) { headerMap.put("logtime", "unknown"); event.setHeaders(headerMap); } return event; } @Override public List<Event> intercept(List<Event> events) { List<Event> out = new ArrayList<>(); for (Event event : events) { Event outEvent = intercept(event); if (outEvent != null) { out.add(outEvent); } } return out; } @Override public void close() { } public static class Builder implements Interceptor.Builder { @Override public Interceptor build() { return new CustomerInterceptor(); } @Override public void configure(Context context) { } }
啟動
flume-ng agent --conf /opt/hoult/servers/flume-1.9.0/conf --conf-file /opt/hoult/servers/conf/flume-test.conf -name a1 -Dflume.roog.logger=INFO,console ## 測試 telnet linux121 9999
感謝各位的閱讀,以上就是“Flume接入Hive數(shù)倉的搭建流程”的內(nèi)容了,經(jīng)過本文的學(xué)習(xí)后,相信大家對Flume接入Hive數(shù)倉的搭建流程這一問題有了更深刻的體會,具體使用情況還需要大家實(shí)踐驗(yàn)證。這里是創(chuàng)新互聯(lián),小編將為大家推送更多相關(guān)知識點(diǎn)的文章,歡迎關(guān)注!
文章標(biāo)題:Flume接入Hive數(shù)倉的搭建流程
分享地址:http://vcdvsql.cn/article16/pehjdg.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供App設(shè)計、微信公眾號、企業(yè)網(wǎng)站制作、外貿(mào)網(wǎng)站建設(shè)、企業(yè)建站、域名注冊
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)