本篇內容介紹了“C++中如何實現搜索二叉樹”的有關知識,在實際案例的操作過程中,不少人都會遇到這樣的困境,接下來就讓小編帶領大家學習一下如何處理這些情況吧!希望大家仔細閱讀,能夠學有所成!
成都創新互聯專注于襄汾網站建設服務及定制,我們擁有豐富的企業做網站經驗。 熱誠為您提供襄汾營銷型網站建設,襄汾網站制作、襄汾網頁設計、襄汾網站官網定制、成都微信小程序服務,打造襄汾網絡公司原創品牌,更為您提供襄汾網站排名全網營銷落地服務。二叉查找樹(英語:Binary Search Tree),也稱二叉搜索樹、有序二叉樹(英語:ordered binary tree),排序二叉樹(英語:sorted binary tree),是指一棵空樹或者具有下列性質的二叉樹:
任意節點的左子樹不空,則左子樹上所有結點的值均小于它的根結點的值;
任意節點的右子樹不空,則右子樹上所有結點的值均大于它的根結點的值;
任意節點的左、右子樹也分別為二叉查找樹;
沒有鍵值相等的節點。
#pragma once template<class K, class V> struct BSTreeNode { K _key; V _value; BSTreeNode<K, V>* _left; BSTreeNode<K, V>* _right; BSTreeNode(const K& key, const V& value) :_key(key) ,_value(value) ,_left(NULL) ,_right(NULL) {} }; template<class K, class V> class BSTree { typedef BSTreeNode<K, V> Node; public: BSTree() :_root(NULL) {} bool Insert(const K& key, const V& value) { if (NULL == _root)//若為空樹 { _root = new Node(key, value); return true; } Node* parent = NULL; Node* cur = _root; //確定插入節點的位置 while (cur) { if (key < cur->_key) { parent = cur; cur = cur->_left; } else if (key > cur->_key) { parent = cur; cur = cur->_right; } else//已經存在key { return false; } } //插入節點 if (key > parent->_key) parent->_right = new Node(key, value); else parent->_left = new Node(key, value); } //Insert遞歸寫法 bool InsertR(const K& key, const V& value) { return _InsertR(_root, key, value); } bool _InsertR(Node*& root, const K& key, const V& value) { if (NULL == root) { root = new Node(key, value); return true; } if (key > root->_key) return _InsertR(root->_right, key, value); else if (key < root->_key) return _InsertR(root->_left, key, value); else return false; } Node* Find(const K& key) { Node* cur = _root; while (cur) { if (key > cur->_key) cur = cur->_right; else if (key < cur->_key) cur = cur->_left; else return cur; } return NULL; } //Find遞歸寫法 Node* FindR(const K& key) { return _FindR(_root, key); } Node* _FindR(Node* root, const K& key) { if (NULL == root) return NULL; if (key > root->_key) return _FindR(root->_right, key); else if (key < root->_key) return _FindR(root->_left, key); else return root; } bool Remove(const K& key) { Node* parent = NULL; Node* cur = _root; //確定刪除節點的位置 while (cur) { if (key > cur->_key) { parent = cur; cur = cur->_right; } else if (key < cur->_key) { parent = cur; cur = cur->_left; } else { break; } } if (NULL == cur)//沒有該節點 { return false; } Node* del; if (NULL == cur->_left)//刪除節點的左孩子為空 { del = cur; //刪除的節點為根節點 if (NULL == parent) { _root = _root->_right; } else { if (cur == parent->_left) parent->_left = cur->_right; else parent->_right = cur->_right; } } else if (NULL == cur->_right)//刪除節點的右孩子為空 { del = cur; if (NULL == parent) { _root = _root->_left; } else { if (cur == parent->_left) parent->_left = cur->_right; else parent->_right = cur->_left; } } else//刪除節點的左右孩子都不為空,找右子樹最左節點代替該節點刪除 { parent = cur; Node* leftmost = cur->_right; while (leftmost->_left) { parent = leftmost; leftmost = leftmost->_left; } del = leftmost; cur->_key = leftmost->_key; cur->_value = leftmost->_value; if (leftmost == parent->_left) parent->_left = leftmost->_right; else parent->_right = leftmost->_right; } return true; } //Remove遞歸寫法 bool RemoveR(const K& key) { return _RemoveR(_root, key); } bool _RemoveR(Node*& root, const K& key) { if (NULL == root) return false; if (key > root->_key) { return _RemoveR(root->_right, key); } else if (key < root->_key) { return _RemoveR(root->_left, key); } else { Node* del = root; if (NULL == root->_left) { root = root->_right; } else if (NULL == root->_right) { root = root->_left; } else { Node* leftmost = root->_right; while (leftmost->_left) { leftmost = leftmost->_left; } swap(root->_key, leftmost->_key); swap(root->_value, leftmost->_value); return _RemoveR(root->_right, key); } delete del; } return true; } //中序遍歷遞歸寫法 void InOrder() { _InOrder(_root); } void _InOrder(Node* root) { if (NULL == root) return; _InOrder(root->_left); cout<<root->_key<<" "; _InOrder(root->_right); } protected: Node* _root; }; void Test() { BSTree<int, int> t; int a[] = {5, 3, 4, 1, 7, 8, 2, 6, 0, 9}; for (size_t i = 0; i < sizeof(a)/sizeof(a[0]);++i) { t.InsertR(a[i], i); } cout<<t.FindR(8)->_key<<endl; cout<<t.FindR(5)->_key<<endl; cout<<t.FindR(9)->_key<<endl; t.RemoveR(8); t.RemoveR(7); t.RemoveR(9); t.RemoveR(6); t.RemoveR(5); t.RemoveR(3); t.RemoveR(1); t.RemoveR(4); t.RemoveR(0); t.RemoveR(2); t.InOrder(); }
“C++中如何實現搜索二叉樹”的內容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業相關的知識可以關注創新互聯網站,小編將為大家輸出更多高質量的實用文章!
分享標題:C++中如何實現搜索二叉樹-創新互聯
標題來源:http://vcdvsql.cn/article20/dsdjco.html
成都網站建設公司_創新互聯,為您提供移動網站建設、標簽優化、App開發、做網站、搜索引擎優化、虛擬主機
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯