圖像二值化的目的是最大限度的將圖象中感興趣的部分保留下來,在很多情況下,也是進行圖像分析、特征提取與模式識別之前的必要的圖像預處理過程。這個看似簡單的問題,在過去的四十年里受到國內外學者的廣泛關注,產生了數以百計的閾值選取方法,但如同其他圖像分割算法一樣,沒有一個現有方法對各種各樣的圖像都能得到令人滿意的結果。
創新互聯主營開福網站建設的網絡公司,主營網站建設方案,成都APP應用開發,開福h5微信小程序開發搭建,開福網站營銷推廣歡迎開福等地區企業咨詢
本文針對幾種經典而常用的二值發放進行了簡單的討論并給出了其vb.net 實現。
1、P-Tile法
Doyle于1962年提出的P-Tile (即P分位數法)可以說是最古老的一種閾值選取方法。該方法根據先驗概率來設定閾值,使得二值化后的目標或背景像素比例等于先驗概率,該方法簡單高效,但是對于先驗概率難于估計的圖像卻無能為力。
2、OTSU 算法(大津法)
OSTU算法可以說是自適應計算單閾值(用來轉換灰度圖像為二值圖像)的簡單高效方法。1978 OTSU年提出的最大類間方差法以其計算簡單、穩定有效,一直廣為使用。
3、迭代法(最佳閥值法)
(1). 求出圖象的最大灰度值和最小灰度值,分別記為Zl和Zk,令初始閾值為:
(2). 根據閾值TK將圖象分割為前景和背景,分別求出兩者的平均灰度值Z0和ZB:
式中,Z(i,j)是圖像上(i,j)點的象素值,N(i,j)是(i,j)點的權值,一般取1。
(3). 若TK=TK+1,則所得即為閾值,否則轉2,迭代計算。
4、一維最大熵閾值法
它的思想是統計圖像中每一個灰度級出現的概率 ,計算該灰度級的熵 ,假設以灰度級T分割圖像,圖像中低于T灰度級的像素點構成目標物體(O),高于灰度級T的像素點構成背景(B),那么各個灰度級在本區的分布概率為:
O區: i=1,2……,t
B區: i=t+1,t+2……L-1
上式中的 ,這樣對于數字圖像中的目標和背景區域的熵分別為:
對圖像中的每一個灰度級分別求取W=H0 +HB,選取使W最大的灰度級作為分割圖像的閾值,這就是一維最大熵閾值圖像分割法。
VB的運算順序是:先乘除、后加減,有括號的先算括號內,有負號的先算負號。
請你比較一下這個運算中x和y的值:
Dim n As Single = 4
Dim x As Single
Dim y As Single
x = n + 1
x = x / n
x = x - 1
x = Math.Sqrt(x)
y = Math.Sqrt((n + 1) / n - 1)
這樣就會發現,你的代碼中括號的位置錯了。
正確的應該是: Math.Sqrt((n + 1) / n - 1)
首先vb.net是一種編程語言,它自己是沒有的。
但vb.net與c#、vc++.net等其它編程語言共用一個公共類庫(叫框架類庫),這個類庫在命名空間System中提供了一個類叫Math(Public NotInheritable Class Math)。它為三角函數、對數函數和其他通用數學函數提供了常數和靜態方法,其中就包括Max。
網站名稱:關于vb.net實現方差的信息
文章URL:http://vcdvsql.cn/article22/ddccdjc.html
成都網站建設公司_創新互聯,為您提供ChatGPT、商城網站、全網營銷推廣、移動網站建設、App設計、企業網站制作
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯