bl双性强迫侵犯h_国产在线观看人成激情视频_蜜芽188_被诱拐的少孩全彩啪啪漫画

關于貝葉斯python函數的信息

如何在Python中實現這五類強大的概率分布

R編程語言已經成為統計分析中的事實標準。但在這篇文章中,我將告訴你在Python中實現統計學概念會是如此容易。我要使用Python實現一些離散和連續的概率分布。雖然我不會討論這些分布的數學細節,但我會以鏈接的方式給你一些學習這些統計學概念的好資料。在討論這些概率分布之前,我想簡單說說什么是隨機變量(random variable)。隨機變量是對一次試驗結果的量化。

成都創新互聯專注于拱墅企業網站建設,成都響應式網站建設公司,商城網站建設。拱墅網站建設公司,為拱墅等地區提供建站服務。全流程定制網站開發,專業設計,全程項目跟蹤,成都創新互聯專業和態度為您提供的服務

舉個例子,一個表示拋硬幣結果的隨機變量可以表示成

Python

1

2

X = {1 如果正面朝上,

2 如果反面朝上}

隨機變量是一個變量,它取值于一組可能的值(離散或連續的),并服從某種隨機性。隨機變量的每個可能取值的都與一個概率相關聯。隨機變量的所有可能取值和與之相關聯的概率就被稱為概率分布(probability distributrion)。

我鼓勵大家仔細研究一下scipy.stats模塊。

概率分布有兩種類型:離散(discrete)概率分布和連續(continuous)概率分布。

離散概率分布也稱為概率質量函數(probability mass function)。離散概率分布的例子有伯努利分布(Bernoulli distribution)、二項分布(binomial distribution)、泊松分布(Poisson distribution)和幾何分布(geometric distribution)等。

連續概率分布也稱為概率密度函數(probability density function),它們是具有連續取值(例如一條實線上的值)的函數。正態分布(normal distribution)、指數分布(exponential distribution)和β分布(beta distribution)等都屬于連續概率分布。

若想了解更多關于離散和連續隨機變量的知識,你可以觀看可汗學院關于概率分布的視頻。

二項分布(Binomial Distribution)

服從二項分布的隨機變量X表示在n個獨立的是/非試驗中成功的次數,其中每次試驗的成功概率為p。

E(X) = np, Var(X) = np(1?p)

如果你想知道每個函數的原理,你可以在IPython筆記本中使用help file命令。 E(X)表示分布的期望或平均值。

鍵入stats.binom?了解二項分布函數binom的更多信息。

二項分布的例子:拋擲10次硬幣,恰好兩次正面朝上的概率是多少?

假設在該試驗中正面朝上的概率為0.3,這意味著平均來說,我們可以期待有3次是硬幣正面朝上的。我定義擲硬幣的所有可能結果為k = np.arange(0,11):你可能觀測到0次正面朝上、1次正面朝上,一直到10次正面朝上。我使用stats.binom.pmf計算每次觀測的概率質量函數。它返回一個含有11個元素的列表(list),這些元素表示與每個觀測相關聯的概率值。

您可以使用.rvs函數模擬一個二項隨機變量,其中參數size指定你要進行模擬的次數。我讓Python返回10000個參數為n和p的二項式隨機變量。我將輸出這些隨機變量的平均值和標準差,然后畫出所有的隨機變量的直方圖。

泊松分布(Poisson Distribution)

一個服從泊松分布的隨機變量X,表示在具有比率參數(rate parameter)λ的一段固定時間間隔內,事件發生的次數。參數λ告訴你該事件發生的比率。隨機變量X的平均值和方差都是λ。

E(X) = λ, Var(X) = λ

泊松分布的例子:已知某路口發生事故的比率是每天2次,那么在此處一天內發生4次事故的概率是多少?

讓我們考慮這個平均每天發生2起事故的例子。泊松分布的實現和二項分布有些類似,在泊松分布中我們需要指定比率參數。泊松分布的輸出是一個數列,包含了發生0次、1次、2次,直到10次事故的概率。我用結果生成了以下圖片。

你可以看到,事故次數的峰值在均值附近。平均來說,你可以預計事件發生的次數為λ。嘗試不同的λ和n的值,然后看看分布的形狀是怎么變化的。

現在我來模擬1000個服從泊松分布的隨機變量。

正態分布(Normal Distribution)

正態分布是一種連續分布,其函數可以在實線上的任何地方取值。正態分布由兩個參數描述:分布的平均值μ和方差σ2 。

E(X) = μ, Var(X) = σ2

正態分布的取值可以從負無窮到正無窮。你可以注意到,我用stats.norm.pdf得到正態分布的概率密度函數。

β分布(Beta Distribution)

β分布是一個取值在 [0, 1] 之間的連續分布,它由兩個形態參數α和β的取值所刻畫。

β分布的形狀取決于α和β的值。貝葉斯分析中大量使用了β分布。

當你將參數α和β都設置為1時,該分布又被稱為均勻分布(uniform distribution)。嘗試不同的α和β取值,看看分布的形狀是如何變化的。

指數分布(Exponential Distribution)

指數分布是一種連續概率分布,用于表示獨立隨機事件發生的時間間隔。比如旅客進入機場的時間間隔、打進客服中心電話的時間間隔、中文維基百科新條目出現的時間間隔等等。

我將參數λ設置為0.5,并將x的取值范圍設置為 $[0, 15]$ 。

接著,我在指數分布下模擬1000個隨機變量。scale參數表示λ的倒數。函數np.std中,參數ddof等于標準偏差除以 $n-1$ 的值。

結語(Conclusion)

概率分布就像蓋房子的藍圖,而隨機變量是對試驗事件的總結。我建議你去看看哈佛大學數據科學課程的講座,Joe Blitzstein教授給了一份摘要,包含了你所需要了解的關于統計模型和分布的全部。

python 樸素貝葉斯怎樣獲得 概率結果

樸素:特征條件獨立 貝葉斯:基于貝葉斯定理 根據貝葉斯定理,對一個分類問題,給定樣本特征x,樣本屬于類別y的概率是 p(y|x)=p(x|y)p(y)p(x) 在這里,x是一個特征向量,將設x維度為M。

請問你會用python實現貝葉斯網絡了嗎

Bayesian-belief-networks允許你用純Python創建貝葉斯信念網絡和其他圖模型,目前支持四種不同的推理方法。

支持的圖模型

離散變量的貝葉斯信念網絡

有著高斯分布的連續變量的高斯貝葉斯網絡

推理引擎

消息傳遞和聯合樹算法(Junction Tree Algorithm)

和積算法(The Sum Product Algorithm)

MCMC采樣的近似推理

高斯貝葉斯網絡中得Exact Propagation

樸素貝葉斯分類算法的sklearn實現

1、背景

《機器學習實戰》當中,用python根據貝葉斯公式實現了基本的分類算法。現在來看看用sklearn,如何實現。還拿之前的例子,對帖子的分類。數據如下:

補充:題目的值左邊是幾個人的評論,右邊是評論屬于侮辱類(1)、正常類(0),需要進行文本分類,且再有新的文本過來時能自動劃分至0或1。

2、分類

(1)算法的準備

通過查看sklearn的訓練模型函數,fit(X, Y),發現只需要準備兩個參數。一個是數據的矩陣,另一個是數據的分類數組。首先就是將以上的文本轉化成矩陣。

在前一章其實已經講解過如何將文本轉化成矩陣。這里將示意的再補充下。

a.首先選取所有的單詞,形成列,也可理解為屬性。例如:

b.其次將遍歷每個文本,填滿上述列的值。文本出現過列的次,填一。沒有出現過填0。比如第一句就是:my dog has flea problems help please,可表示為:

同理所有的文本都可如此表示,所以就形成了一個數字的矩陣。

(2)beyes模型的選擇

在完成數據的準備以后,就可以直接調用sklearn的模型和函數完成模型的訓練啦。但在beyes模型的選擇的時候發現,beyes下有多個模型可選擇,所以這個會讓人糾結。接下來共同了解下這些模型:

a.高斯模型(GaussianNB)

高斯模型是對于每個屬性的值是連續的,且服從高斯分布時可使用:

比如人的身高,比如花的高度等等。當然你也可將這些數據離散化,比如按等距劃分、等頻劃分成離散的值,但可能效果都沒有直接用高斯模型來計算的好。

用法:class sklearn.naive_bayes.GaussianNB

參數:無

b.多項式模型(MultinominalNB)

如果大部分是多元離散值,則采用多項式模型要好些。多項式模型,通常就是構造參數向量,然后通過極大似然估計來尋求參數的最有值。

這里只簡單的略列一些公式,具體可查詢更多資料。從這個計算過程中可得出,這里引入啦一個平滑先驗值alpha,這個值在模型訓練的時候也會用到。通常alpha0,可引入不在訓練集的特征,尤其當alpha=1,成為拉普拉絲平滑。具體alpha取值對模型的影響可附件的圖。

用法:class sklearn.naive_bayes.MultinomialNB(alpha=1.0,fit_prior=True,class_prior=None)?

參數:

alpha:浮點數,就是上述說的引入平滑的值;

fit_prior:bool值,如果為Ture,則不用去學習P(y=ck),以均勻分布替代,否則則去學習P(y=ck)(不懂)

class_prior:一個數組。它指定了每個分類的先驗概率P(y=c1),P(y=c2)…..,若指定了該參數?

則每個分類的先驗概率無需學習 (不懂)

c.伯努利模型(BernoulliNB)

如果特征值為二元離散值或是稀疏的多元離散值,則可采用伯努利模型。

公式:class sklearn.naive_bayes.BernoulliNB(alpha=1.0,binarize=0.0,fit_prior=Ture,?

class_prior=None)?

參數:

binarize:一個浮點數或者None,如果為浮點數則以該數值為界,特征值大于它的取1,小于的為0 。如果為None,假定原始數據已經二值化?

其它參數同上。

通過以上的模型對比和分析,由于文本分析轉化后是很多二項取值的稀疏矩陣,因此選取伯努利模型效果會更佳。

補充:alpha、binarize值對模型效果的影響

標題名稱:關于貝葉斯python函數的信息
本文來源:http://vcdvsql.cn/article24/hiocje.html

成都網站建設公司_創新互聯,為您提供網站設計公司網站建設用戶體驗品牌網站制作企業建站面包屑導航

廣告

聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯

成都做網站