譜聚類概念 :
創(chuàng)新互聯(lián)公司自2013年創(chuàng)立以來,是專業(yè)互聯(lián)網(wǎng)技術(shù)服務公司,擁有項目成都網(wǎng)站建設、網(wǎng)站設計網(wǎng)站策劃,項目實施與項目整合能力。我們以讓每一個夢想脫穎而出為使命,1280元和政做網(wǎng)站,已為上家服務,為和政各地企業(yè)和個人服務,聯(lián)系電話:13518219792
譜聚類是一種基于圖論的聚類方法,通過對樣本數(shù)據(jù)的拉普拉斯矩陣的特征向量進行聚類,從而達到對樣本數(shù)據(jù)聚類的母的。譜聚類可以理解為將高維空間的數(shù)據(jù)映射到低維,然后在低維空間用其它聚類算法(如KMeans)進行聚類。
算法步驟
1 計算相似度矩陣 W
2 計算度矩陣 D
3 計算拉普拉斯矩陣L=D-W
4 計算L的特征值,將特征值從小到大排序,取前k個特征值.將這個特征值向量轉(zhuǎn)換為矩陣
5 通過其他聚類算法對其進行聚類,如k-means
詳細公式和概念請到 大佬博客
相比較PCA降維中取前k大的特征值對應的特征向量,這里取得是前k小的特征值對應的特征向量。但是上述的譜聚類算法并不是最優(yōu)的,接下來我們一步一步的分解上面的步驟,總結(jié)一下在此基礎(chǔ)上進行優(yōu)化的譜聚類的版本。
python實現(xiàn)
例子一:使用譜聚類從噪聲背景中分割目標
效果圖
例子2:分割圖像中硬幣的區(qū)域
效果圖
注意
1)當聚類的類別個數(shù)較小的時候,譜聚類的效果會很好,但是當聚類的類別個數(shù)較大的時候,則不建議使用譜聚類;
(2)譜聚類算法使用了降維的技術(shù),所以更加適用于高維數(shù)據(jù)的聚類;
(3)譜聚類只需要數(shù)據(jù)之間的相似度矩陣,因此對于處理稀疏數(shù)據(jù)的聚類很有效。這點傳統(tǒng)聚類算法(比如K-Means)很難做到
(4)譜聚類算法建立在譜圖理論基礎(chǔ)上,與傳統(tǒng)的聚類算法相比,它具有能在任意形狀的樣本空間上聚類且收斂于全局最優(yōu)解
(5)譜聚類對相似度圖的改變和聚類參數(shù)的選擇非常的敏感;
(6)譜聚類適用于均衡分類問題,即各簇之間點的個數(shù)相差不大,對于簇之間點個數(shù)相差懸殊的聚類問題,譜聚類則不適用;
參考
譜聚類算法介紹
sklearn官網(wǎng)
1、從Kmeans說起
Kmeans是一個非常基礎(chǔ)的聚類算法,使用了迭代的思想,關(guān)于其原理這里不說了。下面說一下如何在matlab中使用kmeans算法。
創(chuàng)建7個二維的數(shù)據(jù)點:
復制代碼代碼如下:
x=[randn(3,2)*.4;randn(4,2)*.5+ones(4,1)*[4 4]];
使用kmeans函數(shù):
復制代碼代碼如下:
class = kmeans(x, 2);
x是數(shù)據(jù)點,x的每一行代表一個數(shù)據(jù);2指定要有2個中心點,也就是聚類結(jié)果要有2個簇。 class將是一個具有70個元素的列向量,這些元素依次對應70個數(shù)據(jù)點,元素值代表著其對應的數(shù)據(jù)點所處的分類號。某次運行后,class的值是:
復制代碼代碼如下:
2
2
2
1
1
1
1
這說明x的前三個數(shù)據(jù)點屬于簇2,而后四個數(shù)據(jù)點屬于簇1。 kmeans函數(shù)也可以像下面這樣使用:
復制代碼代碼如下:
[class, C, sumd, D] = kmeans(x, 2)
class =
2
2
2
1
1
1
1
C =
4.0629 4.0845
-0.1341 0.1201
sumd =
1.2017
0.2939
D =
34.3727 0.0184
29.5644 0.1858
36.3511 0.0898
0.1247 37.4801
0.7537 24.0659
0.1979 36.7666
0.1256 36.2149
class依舊代表著每個數(shù)據(jù)點的分類;C包含最終的中心點,一行代表一個中心點;sumd代表著每個中心點與所屬簇內(nèi)各個數(shù)據(jù)點的距離之和;D的每一行也對應一個數(shù)據(jù)點,行中的數(shù)值依次是該數(shù)據(jù)點與各個中心點之間的距離,Kmeans默認使用的距離是歐幾里得距離(參考資料[3])的平方值。kmeans函數(shù)使用的距離,也可以是曼哈頓距離(L1-距離),以及其他類型的距離,可以通過添加參數(shù)指定。
kmeans有幾個缺點(這在很多資料上都有說明):
1、最終簇的類別數(shù)目(即中心點或者說種子點的數(shù)目)k并不一定能事先知道,所以如何選一個合適的k的值是一個問題。
2、最開始的種子點的選擇的好壞會影響到聚類結(jié)果。
3、對噪聲和離群點敏感。
4、等等。
2、kmeans++算法的基本思路
kmeans++算法的主要工作體現(xiàn)在種子點的選擇上,基本原則是使得各個種子點之間的距離盡可能的大,但是又得排除噪聲的影響。 以下為基本思路:
1、從輸入的數(shù)據(jù)點集合(要求有k個聚類)中隨機選擇一個點作為第一個聚類中心
2、對于數(shù)據(jù)集中的每一個點x,計算它與最近聚類中心(指已選擇的聚類中心)的距離D(x)
3、選擇一個新的數(shù)據(jù)點作為新的聚類中心,選擇的原則是:D(x)較大的點,被選取作為聚類中心的概率較大
4、重復2和3直到k個聚類中心被選出來
5、利用這k個初始的聚類中心來運行標準的k-means算法
假定數(shù)據(jù)點集合X有n個數(shù)據(jù)點,依次用X(1)、X(2)、……、X(n)表示,那么,在第2步中依次計算每個數(shù)據(jù)點與最近的種子點(聚類中心)的距離,依次得到D(1)、D(2)、……、D(n)構(gòu)成的集合D。在D中,為了避免噪聲,不能直接選取值最大的元素,應該選擇值較大的元素,然后將其對應的數(shù)據(jù)點作為種子點。
如何選擇值較大的元素呢,下面是一種思路(暫未找到最初的來源,在資料[2]等地方均有提及,筆者換了一種讓自己更好理解的說法): 把集合D中的每個元素D(x)想象為一根線L(x),線的長度就是元素的值。將這些線依次按照L(1)、L(2)、……、L(n)的順序連接起來,組成長線L。L(1)、L(2)、……、L(n)稱為L的子線。根據(jù)概率的相關(guān)知識,如果我們在L上隨機選擇一個點,那么這個點所在的子線很有可能是比較長的子線,而這個子線對應的數(shù)據(jù)點就可以作為種子點。下文中kmeans++的兩種實現(xiàn)均是這個原理。
3、python版本的kmeans++
在 中能找到多種編程語言版本的Kmeans++實現(xiàn)。下面的內(nèi)容是基于python的實現(xiàn)(中文注釋是筆者添加的):
復制代碼代碼如下:
from math import pi, sin, cos
from collections import namedtuple
from random import random, choice
from copy import copy
try:
import psyco
psyco.full()
except ImportError:
pass
FLOAT_MAX = 1e100
class Point:
__slots__ = ["x", "y", "group"]
def __init__(self, x=0.0, y=0.0, group=0):
self.x, self.y, self.group = x, y, group
def generate_points(npoints, radius):
points = [Point() for _ in xrange(npoints)]
# note: this is not a uniform 2-d distribution
for p in points:
r = random() * radius
ang = random() * 2 * pi
p.x = r * cos(ang)
p.y = r * sin(ang)
return points
def nearest_cluster_center(point, cluster_centers):
"""Distance and index of the closest cluster center"""
def sqr_distance_2D(a, b):
return (a.x - b.x) ** 2 + (a.y - b.y) ** 2
min_index = point.group
min_dist = FLOAT_MAX
for i, cc in enumerate(cluster_centers):
d = sqr_distance_2D(cc, point)
if min_dist d:
min_dist = d
min_index = i
return (min_index, min_dist)
'''
points是數(shù)據(jù)點,nclusters是給定的簇類數(shù)目
cluster_centers包含初始化的nclusters個中心點,開始都是對象-(0,0,0)
'''
def kpp(points, cluster_centers):
cluster_centers[0] = copy(choice(points)) #隨機選取第一個中心點
d = [0.0 for _ in xrange(len(points))] #列表,長度為len(points),保存每個點離最近的中心點的距離
for i in xrange(1, len(cluster_centers)): # i=1...len(c_c)-1
sum = 0
for j, p in enumerate(points):
d[j] = nearest_cluster_center(p, cluster_centers[:i])[1] #第j個數(shù)據(jù)點p與各個中心點距離的最小值
sum += d[j]
sum *= random()
for j, di in enumerate(d):
sum -= di
if sum 0:
continue
cluster_centers[i] = copy(points[j])
break
for p in points:
p.group = nearest_cluster_center(p, cluster_centers)[0]
'''
points是數(shù)據(jù)點,nclusters是給定的簇類數(shù)目
'''
def lloyd(points, nclusters):
cluster_centers = [Point() for _ in xrange(nclusters)] #根據(jù)指定的中心點個數(shù),初始化中心點,均為(0,0,0)
# call k++ init
kpp(points, cluster_centers) #選擇初始種子點
# 下面是kmeans
lenpts10 = len(points) 10
changed = 0
while True:
# group element for centroids are used as counters
for cc in cluster_centers:
cc.x = 0
cc.y = 0
cc.group = 0
for p in points:
cluster_centers[p.group].group += 1 #與該種子點在同一簇的數(shù)據(jù)點的個數(shù)
cluster_centers[p.group].x += p.x
cluster_centers[p.group].y += p.y
for cc in cluster_centers: #生成新的中心點
cc.x /= cc.group
cc.y /= cc.group
# find closest centroid of each PointPtr
changed = 0 #記錄所屬簇發(fā)生變化的數(shù)據(jù)點的個數(shù)
for p in points:
min_i = nearest_cluster_center(p, cluster_centers)[0]
if min_i != p.group:
changed += 1
p.group = min_i
# stop when 99.9% of points are good
if changed = lenpts10:
break
for i, cc in enumerate(cluster_centers):
cc.group = i
return cluster_centers
def print_eps(points, cluster_centers, W=400, H=400):
Color = namedtuple("Color", "r g b");
colors = []
for i in xrange(len(cluster_centers)):
colors.append(Color((3 * (i + 1) % 11) / 11.0,
(7 * i % 11) / 11.0,
(9 * i % 11) / 11.0))
max_x = max_y = -FLOAT_MAX
min_x = min_y = FLOAT_MAX
for p in points:
if max_x p.x: max_x = p.x
if min_x p.x: min_x = p.x
if max_y p.y: max_y = p.y
if min_y p.y: min_y = p.y
scale = min(W / (max_x - min_x),
H / (max_y - min_y))
cx = (max_x + min_x) / 2
cy = (max_y + min_y) / 2
print "%%!PS-Adobe-3.0\n%%%%BoundingBox: -5 -5 %d %d" % (W + 10, H + 10)
print ("/l {rlineto} def /m {rmoveto} def\n" +
"/c { .25 sub exch .25 sub exch .5 0 360 arc fill } def\n" +
"/s { moveto -2 0 m 2 2 l 2 -2 l -2 -2 l closepath " +
" gsave 1 setgray fill grestore gsave 3 setlinewidth" +
" 1 setgray stroke grestore 0 setgray stroke }def")
for i, cc in enumerate(cluster_centers):
print ("%g %g %g setrgbcolor" %
(colors[i].r, colors[i].g, colors[i].b))
for p in points:
if p.group != i:
continue
print ("%.3f %.3f c" % ((p.x - cx) * scale + W / 2,
(p.y - cy) * scale + H / 2))
print ("\n0 setgray %g %g s" % ((cc.x - cx) * scale + W / 2,
(cc.y - cy) * scale + H / 2))
print "\n%%%%EOF"
def main():
npoints = 30000
k = 7 # # clusters
points = generate_points(npoints, 10)
cluster_centers = lloyd(points, k)
print_eps(points, cluster_centers)
main()
上述代碼實現(xiàn)的算法是針對二維數(shù)據(jù)的,所以Point對象有三個屬性,分別是在x軸上的值、在y軸上的值、以及所屬的簇的標識。函數(shù)lloyd是kmeans++算法的整體實現(xiàn),其先是通過kpp函數(shù)選取合適的種子點,然后對數(shù)據(jù)集實行kmeans算法進行聚類。kpp函數(shù)的實現(xiàn)完全符合上述kmeans++的基本思路的2、3、4步。
K-means算法是硬聚類算法,是典型的基于原型的目標函數(shù)聚類方法的代表,它是數(shù)據(jù)點到原型的某種距離作為優(yōu)化的目標函數(shù),利用函數(shù)求極值的方法得到迭代運算的調(diào)整規(guī)則。K-means算法以歐式距離作為相似度測度,它是求對應某一初始聚類中心向量V最優(yōu)分類,使得評價指標J最小。算法采用誤差平方和準則函數(shù)作為聚類準則函數(shù)。
通常,人們根據(jù)樣本間的某種距離或者相似性來定義聚類,即把相似的(或距離近的)樣本聚為同一類,而把不相似的(或距離遠的)樣本歸在其他類。
所謂聚類問題,就是給定一個元素集合D,其中每個元素具有n個可觀察屬性,使用某種算法將D劃分成k個子集,要求每個子集內(nèi)部的元素之間相異度盡可能低,而不同子集的元素相異度盡可能高。其中每個子集叫做一個簇。
k-means算法是一種很常見的聚類算法,它的基本思想是:通過迭代尋找k個聚類的一種劃分方案,使得用這k個聚類的均值來代表相應各類樣本時所得的總體誤差最小。
看起來還不錯
分析一個公司的客戶分類,這樣可以對不同的客戶使用不同的商業(yè)策略,或是電子商務中分析商品相似度,歸類商品,從而可以使用一些不同的銷售策略,等等。
-Means聚類算法
k-means算法以k為參數(shù),把n個對象分成k個簇,使簇內(nèi)具有較高的相似度,而簇間的相似度較低。
隨機選擇k個點作為初始的聚類中心。
對于剩下的點,根據(jù)其與聚類中心的距離,將其歸入最近的簇。
對每個簇,計算所有點的均值作為新的聚類中心。
重復2,3直到聚類中心不再發(fā)生改變
Figure 1
K-means的應用
數(shù)據(jù)介紹:
現(xiàn)有1999年全國31個省份城鎮(zhèn)居民家庭平均每人全年消費性支出的八大主要變量數(shù)據(jù),這八大變量分別是:食品、衣著、家庭設備用品及服務、醫(yī)療保健、交通和通訊、娛樂教育文化服務、居住以及雜項商品和服務。利用已有數(shù)據(jù),對31個省份進行聚類。
實驗目的:
通過聚類,了解1999年各個省份的消費水平在國內(nèi)的情況。
技術(shù)路線:
sklearn.cluster.Kmeans
數(shù)據(jù)實例:
聚類或聚類分析是無監(jiān)督學習問題。它通常被用作數(shù)據(jù)分析技術(shù),用于發(fā)現(xiàn)數(shù)據(jù)中的有趣模式,例如基于其行為的客戶群。有許多聚類算法可供選擇,對于所有情況,沒有單一的最佳聚類算法。相反,最好探索一系列聚類算法以及每種算法的不同配置。在本教程中,你將發(fā)現(xiàn)如何在 python 中安裝和使用頂級聚類算法。完成本教程后,你將知道:
聚類分析,即聚類,是一項無監(jiān)督的機器學習任務。它包括自動發(fā)現(xiàn)數(shù)據(jù)中的自然分組。與監(jiān)督學習(類似預測建模)不同,聚類算法只解釋輸入數(shù)據(jù),并在特征空間中找到自然組或群集。
群集通常是特征空間中的密度區(qū)域,其中來自域的示例(觀測或數(shù)據(jù)行)比其他群集更接近群集。群集可以具有作為樣本或點特征空間的中心(質(zhì)心),并且可以具有邊界或范圍。
聚類可以作為數(shù)據(jù)分析活動提供幫助,以便了解更多關(guān)于問題域的信息,即所謂的模式發(fā)現(xiàn)或知識發(fā)現(xiàn)。例如:
聚類還可用作特征工程的類型,其中現(xiàn)有的和新的示例可被映射并標記為屬于數(shù)據(jù)中所標識的群集之一。雖然確實存在許多特定于群集的定量措施,但是對所識別的群集的評估是主觀的,并且可能需要領(lǐng)域?qū)<摇Mǔ#垲愃惴ㄔ谌斯ず铣蓴?shù)據(jù)集上與預先定義的群集進行學術(shù)比較,預計算法會發(fā)現(xiàn)這些群集。
有許多類型的聚類算法。許多算法在特征空間中的示例之間使用相似度或距離度量,以發(fā)現(xiàn)密集的觀測區(qū)域。因此,在使用聚類算法之前,擴展數(shù)據(jù)通常是良好的實踐。
一些聚類算法要求您指定或猜測數(shù)據(jù)中要發(fā)現(xiàn)的群集的數(shù)量,而另一些算法要求指定觀測之間的最小距離,其中示例可以被視為“關(guān)閉”或“連接”。因此,聚類分析是一個迭代過程,在該過程中,對所識別的群集的主觀評估被反饋回算法配置的改變中,直到達到期望的或適當?shù)慕Y(jié)果。scikit-learn 庫提供了一套不同的聚類算法供選擇。下面列出了10種比較流行的算法:
每個算法都提供了一種不同的方法來應對數(shù)據(jù)中發(fā)現(xiàn)自然組的挑戰(zhàn)。沒有最好的聚類算法,也沒有簡單的方法來找到最好的算法為您的數(shù)據(jù)沒有使用控制實驗。在本教程中,我們將回顧如何使用來自 scikit-learn 庫的這10個流行的聚類算法中的每一個。這些示例將為您復制粘貼示例并在自己的數(shù)據(jù)上測試方法提供基礎(chǔ)。我們不會深入研究算法如何工作的理論,也不會直接比較它們。讓我們深入研究一下。
在本節(jié)中,我們將回顧如何在 scikit-learn 中使用10個流行的聚類算法。這包括一個擬合模型的例子和可視化結(jié)果的例子。這些示例用于將粘貼復制到您自己的項目中,并將方法應用于您自己的數(shù)據(jù)。
1.庫安裝
首先,讓我們安裝庫。不要跳過此步驟,因為你需要確保安裝了最新版本。你可以使用 pip Python 安裝程序安裝 scikit-learn 存儲庫,如下所示:
接下來,讓我們確認已經(jīng)安裝了庫,并且您正在使用一個現(xiàn)代版本。運行以下腳本以輸出庫版本號。
運行該示例時,您應該看到以下版本號或更高版本。
2.聚類數(shù)據(jù)集
我們將使用 make _ classification ()函數(shù)創(chuàng)建一個測試二分類數(shù)據(jù)集。數(shù)據(jù)集將有1000個示例,每個類有兩個輸入要素和一個群集。這些群集在兩個維度上是可見的,因此我們可以用散點圖繪制數(shù)據(jù),并通過指定的群集對圖中的點進行顏色繪制。這將有助于了解,至少在測試問題上,群集的識別能力如何。該測試問題中的群集基于多變量高斯,并非所有聚類算法都能有效地識別這些類型的群集。因此,本教程中的結(jié)果不應用作比較一般方法的基礎(chǔ)。下面列出了創(chuàng)建和匯總合成聚類數(shù)據(jù)集的示例。
運行該示例將創(chuàng)建合成的聚類數(shù)據(jù)集,然后創(chuàng)建輸入數(shù)據(jù)的散點圖,其中點由類標簽(理想化的群集)著色。我們可以清楚地看到兩個不同的數(shù)據(jù)組在兩個維度,并希望一個自動的聚類算法可以檢測這些分組。
已知聚類著色點的合成聚類數(shù)據(jù)集的散點圖接下來,我們可以開始查看應用于此數(shù)據(jù)集的聚類算法的示例。我已經(jīng)做了一些最小的嘗試來調(diào)整每個方法到數(shù)據(jù)集。3.親和力傳播親和力傳播包括找到一組最能概括數(shù)據(jù)的范例。
它是通過 AffinityPropagation 類實現(xiàn)的,要調(diào)整的主要配置是將“ 阻尼 ”設置為0.5到1,甚至可能是“首選項”。下面列出了完整的示例。
運行該示例符合訓練數(shù)據(jù)集上的模型,并預測數(shù)據(jù)集中每個示例的群集。然后創(chuàng)建一個散點圖,并由其指定的群集著色。在這種情況下,我無法取得良好的結(jié)果。
數(shù)據(jù)集的散點圖,具有使用親和力傳播識別的聚類
4.聚合聚類
聚合聚類涉及合并示例,直到達到所需的群集數(shù)量為止。它是層次聚類方法的更廣泛類的一部分,通過 AgglomerationClustering 類實現(xiàn)的,主要配置是“ n _ clusters ”集,這是對數(shù)據(jù)中的群集數(shù)量的估計,例如2。下面列出了完整的示例。
運行該示例符合訓練數(shù)據(jù)集上的模型,并預測數(shù)據(jù)集中每個示例的群集。然后創(chuàng)建一個散點圖,并由其指定的群集著色。在這種情況下,可以找到一個合理的分組。
使用聚集聚類識別出具有聚類的數(shù)據(jù)集的散點圖
5.BIRCHBIRCH
聚類( BIRCH 是平衡迭代減少的縮寫,聚類使用層次結(jié)構(gòu))包括構(gòu)造一個樹狀結(jié)構(gòu),從中提取聚類質(zhì)心。
它是通過 Birch 類實現(xiàn)的,主要配置是“ threshold ”和“ n _ clusters ”超參數(shù),后者提供了群集數(shù)量的估計。下面列出了完整的示例。
運行該示例符合訓練數(shù)據(jù)集上的模型,并預測數(shù)據(jù)集中每個示例的群集。然后創(chuàng)建一個散點圖,并由其指定的群集著色。在這種情況下,可以找到一個很好的分組。
使用BIRCH聚類確定具有聚類的數(shù)據(jù)集的散點圖
6.DBSCANDBSCAN
聚類(其中 DBSCAN 是基于密度的空間聚類的噪聲應用程序)涉及在域中尋找高密度區(qū)域,并將其周圍的特征空間區(qū)域擴展為群集。
它是通過 DBSCAN 類實現(xiàn)的,主要配置是“ eps ”和“ min _ samples ”超參數(shù)。下面列出了完整的示例。
運行該示例符合訓練數(shù)據(jù)集上的模型,并預測數(shù)據(jù)集中每個示例的群集。然后創(chuàng)建一個散點圖,并由其指定的群集著色。在這種情況下,盡管需要更多的調(diào)整,但是找到了合理的分組。
使用DBSCAN集群識別出具有集群的數(shù)據(jù)集的散點圖
7.K均值
K-均值聚類可以是最常見的聚類算法,并涉及向群集分配示例,以盡量減少每個群集內(nèi)的方差。
它是通過 K-均值類實現(xiàn)的,要優(yōu)化的主要配置是“ n _ clusters ”超參數(shù)設置為數(shù)據(jù)中估計的群集數(shù)量。下面列出了完整的示例。
運行該示例符合訓練數(shù)據(jù)集上的模型,并預測數(shù)據(jù)集中每個示例的群集。然后創(chuàng)建一個散點圖,并由其指定的群集著色。在這種情況下,可以找到一個合理的分組,盡管每個維度中的不等等方差使得該方法不太適合該數(shù)據(jù)集。
使用K均值聚類識別出具有聚類的數(shù)據(jù)集的散點圖
8.Mini-Batch
K-均值Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的樣本而不是整個數(shù)據(jù)集對群集質(zhì)心進行更新,這可以使大數(shù)據(jù)集的更新速度更快,并且可能對統(tǒng)計噪聲更健壯。
它是通過 MiniBatchKMeans 類實現(xiàn)的,要優(yōu)化的主配置是“ n _ clusters ”超參數(shù),設置為數(shù)據(jù)中估計的群集數(shù)量。下面列出了完整的示例。
運行該示例符合訓練數(shù)據(jù)集上的模型,并預測數(shù)據(jù)集中每個示例的群集。然后創(chuàng)建一個散點圖,并由其指定的群集著色。在這種情況下,會找到與標準 K-均值算法相當?shù)慕Y(jié)果。
帶有最小批次K均值聚類的聚類數(shù)據(jù)集的散點圖
9.均值漂移聚類
均值漂移聚類涉及到根據(jù)特征空間中的實例密度來尋找和調(diào)整質(zhì)心。
它是通過 MeanShift 類實現(xiàn)的,主要配置是“帶寬”超參數(shù)。下面列出了完整的示例。
運行該示例符合訓練數(shù)據(jù)集上的模型,并預測數(shù)據(jù)集中每個示例的群集。然后創(chuàng)建一個散點圖,并由其指定的群集著色。在這種情況下,可以在數(shù)據(jù)中找到一組合理的群集。
具有均值漂移聚類的聚類數(shù)據(jù)集散點圖
10.OPTICSOPTICS
聚類( OPTICS 短于訂購點數(shù)以標識聚類結(jié)構(gòu))是上述 DBSCAN 的修改版本。
它是通過 OPTICS 類實現(xiàn)的,主要配置是“ eps ”和“ min _ samples ”超參數(shù)。下面列出了完整的示例。
運行該示例符合訓練數(shù)據(jù)集上的模型,并預測數(shù)據(jù)集中每個示例的群集。然后創(chuàng)建一個散點圖,并由其指定的群集著色。在這種情況下,我無法在此數(shù)據(jù)集上獲得合理的結(jié)果。
使用OPTICS聚類確定具有聚類的數(shù)據(jù)集的散點圖
11.光譜聚類
光譜聚類是一類通用的聚類方法,取自線性線性代數(shù)。
它是通過 Spectral 聚類類實現(xiàn)的,而主要的 Spectral 聚類是一個由聚類方法組成的通用類,取自線性線性代數(shù)。要優(yōu)化的是“ n _ clusters ”超參數(shù),用于指定數(shù)據(jù)中的估計群集數(shù)量。下面列出了完整的示例。
運行該示例符合訓練數(shù)據(jù)集上的模型,并預測數(shù)據(jù)集中每個示例的群集。然后創(chuàng)建一個散點圖,并由其指定的群集著色。在這種情況下,找到了合理的集群。
使用光譜聚類聚類識別出具有聚類的數(shù)據(jù)集的散點圖
12.高斯混合模型
高斯混合模型總結(jié)了一個多變量概率密度函數(shù),顧名思義就是混合了高斯概率分布。它是通過 Gaussian Mixture 類實現(xiàn)的,要優(yōu)化的主要配置是“ n _ clusters ”超參數(shù),用于指定數(shù)據(jù)中估計的群集數(shù)量。下面列出了完整的示例。
運行該示例符合訓練數(shù)據(jù)集上的模型,并預測數(shù)據(jù)集中每個示例的群集。然后創(chuàng)建一個散點圖,并由其指定的群集著色。在這種情況下,我們可以看到群集被完美地識別。這并不奇怪,因為數(shù)據(jù)集是作為 Gaussian 的混合生成的。
使用高斯混合聚類識別出具有聚類的數(shù)據(jù)集的散點圖
在本文中,你發(fā)現(xiàn)了如何在 python 中安裝和使用頂級聚類算法。具體來說,你學到了:
下面是一個k-means聚類算法在python2.7.5上面的具體實現(xiàn),你需要先安裝Numpy和Matplotlib:
from numpy import *
import time
import matplotlib.pyplot as plt
# calculate Euclidean distance
def euclDistance(vector1, vector2):
return sqrt(sum(power(vector2 - vector1, 2)))
# init centroids with random samples
def initCentroids(dataSet, k):
numSamples, dim = dataSet.shape
centroids = zeros((k, dim))
for i in range(k):
index = int(random.uniform(0, numSamples))
centroids[i, :] = dataSet[index, :]
return centroids
# k-means cluster
def kmeans(dataSet, k):
numSamples = dataSet.shape[0]
# first column stores which cluster this sample belongs to,
# second column stores the error between this sample and its centroid
clusterAssment = mat(zeros((numSamples, 2)))
clusterChanged = True
## step 1: init centroids
centroids = initCentroids(dataSet, k)
while clusterChanged:
clusterChanged = False
## for each sample
for i in xrange(numSamples):
minDist = 100000.0
minIndex = 0
## for each centroid
## step 2: find the centroid who is closest
for j in range(k):
distance = euclDistance(centroids[j, :], dataSet[i, :])
if distance minDist:
minDist = distance
minIndex = j
## step 3: update its cluster
if clusterAssment[i, 0] != minIndex:
clusterChanged = True
clusterAssment[i, :] = minIndex, minDist**2
## step 4: update centroids
for j in range(k):
pointsInCluster = dataSet[nonzero(clusterAssment[:, 0].A == j)[0]]
centroids[j, :] = mean(pointsInCluster, axis = 0)
print 'Congratulations, cluster complete!'
return centroids, clusterAssment
# show your cluster only available with 2-D data
def showCluster(dataSet, k, centroids, clusterAssment):
numSamples, dim = dataSet.shape
if dim != 2:
print "Sorry! I can not draw because the dimension of your data is not 2!"
return 1
mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', 'r', 'pr']
if k len(mark):
print "Sorry! Your k is too large! please contact Zouxy"
return 1
# draw all samples
for i in xrange(numSamples):
markIndex = int(clusterAssment[i, 0])
plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])
mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', 'b', 'pb']
# draw the centroids
for i in range(k):
plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize = 12)
plt.show()
網(wǎng)站名稱:聚類算法python函數(shù) 什么叫聚類算法
轉(zhuǎn)載來于:http://vcdvsql.cn/article26/dosddjg.html
成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站導航、外貿(mào)建站、網(wǎng)站排名、、品牌網(wǎng)站建設、標簽優(yōu)化
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)