識別MNIST已經成了深度學習的hello world,所以每次例程基本都會用到這個數據集,這個數據集在tensorflow內部用著很好的封裝,因此可以方便地使用。
站在用戶的角度思考問題,與客戶深入溝通,找到烏蘇網站設計與烏蘇網站推廣的解決方案,憑借多年的經驗,讓設計與互聯網技術結合,創造個性化、用戶體驗好的作品,建站類型包括:網站建設、成都網站建設、企業官網、英文網站、手機端網站、網站推廣、域名與空間、虛擬空間、企業郵箱。業務覆蓋烏蘇地區。這次我們用tensorflow搭建一個softmax多分類器,和之前搭建線性回歸差不多,第一步是通過確定變量建立圖模型,然后確定誤差函數,最后調用優化器優化。
誤差函數與線性回歸不同,這里因為是多分類問題,所以使用了交叉熵。
另外,有一點值得注意的是,這里構建模型時我試圖想拆分多個函數,但是后來發現這樣做難度很大,因為圖是在規定變量就已經定義好的,不能隨意拆分,也不能當做變量傳來傳去,因此需要將他們寫在一起。
代碼如下:
#encoding=utf-8 __author__ = 'freedom' import tensorflow as tf def loadMNIST(): from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) return mnist def softmax(mnist,rate=0.01,batchSize=50,epoch=20): n = 784 # 向量的維度數目 m = None # 樣本數,這里可以獲取,也可以不獲取 c = 10 # 類別數目 x = tf.placeholder(tf.float32,[m,n]) y = tf.placeholder(tf.float32,[m,c]) w = tf.Variable(tf.zeros([n,c])) b = tf.Variable(tf.zeros([c])) pred= tf.nn.softmax(tf.matmul(x,w)+b) loss = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred),reduction_indices=1)) opt = tf.train.GradientDescentOptimizer(rate).minimize(loss) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) for index in range(epoch): avgLoss = 0 batchNum = int(mnist.train.num_examples/batchSize) for batch in range(batchNum): batch_x,batch_y = mnist.train.next_batch(batchSize) _,Loss = sess.run([opt,loss],{x:batch_x,y:batch_y}) avgLoss += Loss avgLoss /= batchNum print 'every epoch average loss is ',avgLoss right = tf.equal(tf.argmax(pred,1),tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(right,tf.float32)) print 'Accracy is ',sess.run(accuracy,({x:mnist.test.images,y:mnist.test.labels})) if __name__ == "__main__": mnist = loadMNIST() softmax(mnist)
網頁題目:tensorflow實現softma識別MNIST-創新互聯
URL網址:http://vcdvsql.cn/article30/ggjso.html
成都網站建設公司_創新互聯,為您提供域名注冊、企業建站、網站改版、電子商務、品牌網站建設、服務器托管
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯