本篇文章給大家分享的是有關使用python實現AdaBoost算法的方法,小編覺得挺實用的,因此分享給大家學習,希望大家閱讀完這篇文章后可以有所收獲,話不多說,跟著小編一起來看看吧。
創新互聯建站聯系熱線:18980820575,為您提供成都網站建設網頁設計及定制高端網站建設服務,創新互聯建站網頁制作領域十多年,包括水泥攪拌車等多個領域擁有豐富的網站制作經驗,選擇創新互聯建站,為網站錦上添花!代碼
''' 數據集:Mnist 訓練集數量:60000(實際使用:10000) 測試集數量:10000(實際使用:1000) 層數:40 ------------------------------ 運行結果: 正確率:97% 運行時長:65m ''' import time import numpy as np def loadData(fileName): ''' 加載文件 :param fileName:要加載的文件路徑 :return: 數據集和標簽集 ''' # 存放數據及標記 dataArr = [] labelArr = [] # 讀取文件 fr = open(fileName) # 遍歷文件中的每一行 for line in fr.readlines(): # 獲取當前行,并按“,”切割成字段放入列表中 # strip:去掉每行字符串首尾指定的字符(默認空格或換行符) # split:按照指定的字符將字符串切割成每個字段,返回列表形式 curLine = line.strip().split(',') # 將每行中除標記外的數據放入數據集中(curLine[0]為標記信息) # 在放入的同時將原先字符串形式的數據轉換為整型 # 此外將數據進行了二值化處理,大于128的轉換成1,小于的轉換成0,方便后續計算 dataArr.append([int(int(num) > 128) for num in curLine[1:]]) # 將標記信息放入標記集中 # 放入的同時將標記轉換為整型 # 轉換成二分類任務 # 標簽0設置為1,反之為-1 if int(curLine[0]) == 0: labelArr.append(1) else: labelArr.append(-1) # 返回數據集和標記 return dataArr, labelArr def calc_e_Gx(trainDataArr, trainLabelArr, n, div, rule, D): ''' 計算分類錯誤率 :param trainDataArr:訓練數據集數字 :param trainLabelArr: 訓練標簽集數組 :param n: 要操作的特征 :param div:劃分點 :param rule:正反例標簽 :param D:權值分布D :return:預測結果, 分類誤差率 ''' # 初始化分類誤差率為0 e = 0 # 將訓練數據矩陣中特征為n的那一列單獨剝出來做成數組。因為其他元素我們并不需要, # 直接對龐大的訓練集進行操作的話會很慢 x = trainDataArr[:, n] # 同樣將標簽也轉換成數組格式,x和y的轉換只是單純為了提高運行速度 # 測試過相對直接操作而言性能提升很大 y = trainLabelArr predict = [] # 依據小于和大于的標簽依據實際情況會不同,在這里直接進行設置 if rule == 'LisOne': L = 1 H = -1 else: L = -1 H = 1 # 遍歷所有樣本的特征m for i in range(trainDataArr.shape[0]): if x[i] < div: # 如果小于劃分點,則預測為L # 如果設置小于div為1,那么L就是1, # 如果設置小于div為-1,L就是-1 predict.append(L) # 如果預測錯誤,分類錯誤率要加上該分錯的樣本的權值(8.1式) if y[i] != L: e += D[i] elif x[i] >= div: # 與上面思想一樣 predict.append(H) if y[i] != H: e += D[i] # 返回預測結果和分類錯誤率e # 預測結果其實是為了后面做準備的,在算法8.1第四步式8.4中exp內部有個Gx,要用在那個地方 # 以此來更新新的D return np.array(predict), e def createSigleBoostingTree(trainDataArr, trainLabelArr, D): ''' 創建單層提升樹 :param trainDataArr:訓練數據集數組 :param trainLabelArr: 訓練標簽集數組 :param D: 算法8.1中的D :return: 創建的單層提升樹 ''' # 獲得樣本數目及特征數量 m, n = np.shape(trainDataArr) # 單層樹的字典,用于存放當前層提升樹的參數 # 也可以認為該字典代表了一層提升樹 sigleBoostTree = {} # 初始化分類誤差率,分類誤差率在算法8.1步驟(2)(b)有提到 # 誤差率最高也只能100%,因此初始化為1 sigleBoostTree['e'] = 1 # 對每一個特征進行遍歷,尋找用于劃分的最合適的特征 for i in range(n): # 因為特征已經經過二值化,只能為0和1,因此分切分時分為-0.5, 0.5, 1.5三擋進行切割 for div in [-0.5, 0.5, 1.5]: # 在單個特征內對正反例進行劃分時,有兩種情況: # 可能是小于某值的為1,大于某值得為-1,也可能小于某值得是-1,反之為1 # 因此在尋找最佳提升樹的同時對于兩種情況也需要遍歷運行 # LisOne:Low is one:小于某值得是1 # HisOne:High is one:大于某值得是1 for rule in ['LisOne', 'HisOne']: # 按照第i個特征,以值div進行切割,進行當前設置得到的預測和分類錯誤率 Gx, e = calc_e_Gx(trainDataArr, trainLabelArr, i, div, rule, D) # 如果分類錯誤率e小于當前最小的e,那么將它作為最小的分類錯誤率保存 if e < sigleBoostTree['e']: sigleBoostTree['e'] = e # 同時也需要存儲最優劃分點、劃分規則、預測結果、特征索引 # 以便進行D更新和后續預測使用 sigleBoostTree['div'] = div sigleBoostTree['rule'] = rule sigleBoostTree['Gx'] = Gx sigleBoostTree['feature'] = i # 返回單層的提升樹 return sigleBoostTree def createBosstingTree(trainDataList, trainLabelList, treeNum=50): ''' 創建提升樹 創建算法依據“8.1.2 AdaBoost算法” 算法8.1 :param trainDataList:訓練數據集 :param trainLabelList: 訓練測試集 :param treeNum: 樹的層數 :return: 提升樹 ''' # 將數據和標簽轉化為數組形式 trainDataArr = np.array(trainDataList) trainLabelArr = np.array(trainLabelList) # 沒增加一層數后,當前最終預測結果列表 finallpredict = [0] * len(trainLabelArr) # 獲得訓練集數量以及特征個數 m, n = np.shape(trainDataArr) # 依據算法8.1步驟(1)初始化D為1/N D = [1 / m] * m # 初始化提升樹列表,每個位置為一層 tree = [] # 循環創建提升樹 for i in range(treeNum): # 得到當前層的提升樹 curTree = createSigleBoostingTree(trainDataArr, trainLabelArr, D) # 根據式8.2計算當前層的alpha alpha = 1 / 2 * np.log((1 - curTree['e']) / curTree['e']) # 獲得當前層的預測結果,用于下一步更新D Gx = curTree['Gx'] # 依據式8.4更新D # 考慮到該式每次只更新D中的一個w,要循環進行更新知道所有w更新結束會很復雜(其實 # 不是時間上的復雜,只是讓人感覺每次單獨更新一個很累),所以該式以向量相乘的形式, # 一個式子將所有w全部更新完。 # 該式需要線性代數基礎,如果不太熟練建議補充相關知識,當然了,單獨更新w也一點問題 # 沒有 # np.multiply(trainLabelArr, Gx):exp中的y*Gm(x),結果是一個行向量,內部為yi*Gm(xi) # np.exp(-1 * alpha * np.multiply(trainLabelArr, Gx)):上面求出來的行向量內部全體 # 成員再乘以-αm,然后取對數,和書上式子一樣,只不過書上式子內是一個數,這里是一個向量 # D是一個行向量,取代了式中的wmi,然后D求和為Zm # 書中的式子最后得出來一個數w,所有數w組合形成新的D # 這里是直接得到一個向量,向量內元素是所有的w # 本質上結果是相同的 D = np.multiply(D, np.exp(-1 * alpha * np.multiply(trainLabelArr, Gx))) / sum(D) # 在當前層參數中增加alpha參數,預測的時候需要用到 curTree['alpha'] = alpha # 將當前層添加到提升樹索引中。 tree.append(curTree) # -----以下代碼用來輔助,可以去掉--------------- # 根據8.6式將結果加上當前層乘以α,得到目前的最終輸出預測 finallpredict += alpha * Gx # 計算當前最終預測輸出與實際標簽之間的誤差 error = sum([1 for i in range(len(trainDataList)) if np.sign(finallpredict[i]) != trainLabelArr[i]]) # 計算當前最終誤差率 finallError = error / len(trainDataList) # 如果誤差為0,提前退出即可,因為沒有必要再計算算了 if finallError == 0: return tree # 打印一些信息 print('iter:%d:%d, sigle error:%.4f, finall error:%.4f' % (i, treeNum, curTree['e'], finallError)) # 返回整個提升樹 return tree def predict(x, div, rule, feature): ''' 輸出單獨層預測結果 :param x: 預測樣本 :param div: 劃分點 :param rule: 劃分規則 :param feature: 進行操作的特征 :return: ''' # 依據劃分規則定義小于及大于劃分點的標簽 if rule == 'LisOne': L = 1 H = -1 else: L = -1 H = 1 # 判斷預測結果 if x[feature] < div: return L else: return H def test(testDataList, testLabelList, tree): ''' 測試 :param testDataList:測試數據集 :param testLabelList: 測試標簽集 :param tree: 提升樹 :return: 準確率 ''' # 錯誤率計數值 errorCnt = 0 # 遍歷每一個測試樣本 for i in range(len(testDataList)): # 預測結果值,初始為0 result = 0 # 依據算法8.1式8.6 # 預測式子是一個求和式,對于每一層的結果都要進行一次累加 # 遍歷每層的樹 for curTree in tree: # 獲取該層參數 div = curTree['div'] rule = curTree['rule'] feature = curTree['feature'] alpha = curTree['alpha'] # 將當前層結果加入預測中 result += alpha * predict(testDataList[i], div, rule, feature) # 預測結果取sign值,如果大于0 sign為1,反之為0 if np.sign(result) != testLabelList[i]: errorCnt += 1 # 返回準確率 return 1 - errorCnt / len(testDataList) if __name__ == '__main__': # 開始時間 start = time.time() # 獲取訓練集 print('start read transSet') trainDataList, trainLabelList = loadData('../Mnist/mnist_train.csv') # 獲取測試集 print('start read testSet') testDataList, testLabelList = loadData('../Mnist/mnist_test.csv') # 創建提升樹 print('start init train') tree = createBosstingTree(trainDataList[:10000], trainLabelList[:10000], 40) # 測試 print('start to test') accuracy = test(testDataList[:1000], testLabelList[:1000], tree) print('the accuracy is:%d' % (accuracy * 100), '%') # 結束時間 end = time.time() print('time span:', end - start)
新聞名稱:使用python實現AdaBoost算法的方法-創新互聯
當前鏈接:http://vcdvsql.cn/article34/epcpe.html
成都網站建設公司_創新互聯,為您提供軟件開發、定制網站、品牌網站設計、微信公眾號、定制開發、搜索引擎優化
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯