這個定義涉及到向量的極大線性無關組。設a1,a2……as為一個n維向量組,如果向量組中有r個向量線性無關,而任何r+1個向量都線性相關,那么這r個線性無關的向量稱為向量組的一個極大線性無關組。
網站建設哪家好,找成都創新互聯公司!專注于網頁設計、網站建設、微信開發、成都小程序開發、集團企業網站建設等服務項目。為回饋新老客戶創新互聯還提供了新賓免費建站歡迎大家使用!
向量組的極大線性無關組中所含向量的個數,稱為向量的秩。
矩陣的行向量的秩稱為行秩。列向量的秩成為列秩。
三秩相等,也就是矩陣的秩等于行秩等于列秩,按照一般的求矩陣的秩就ok了
一個矩陣中行秩與列秩是相等的,矩陣的行秩與列秩統稱為矩陣的秩。
在線性代數中,一個矩陣A的列秩是A的線性獨立的縱列的極大數目。類似地,行秩是A的線性無關的橫行的極大數目。
即如果把矩陣看成一個個行向量或者列向量,秩就是這些行向量或者列向量的秩,也就是極大無關組中所含向量的個數。矩陣的列秩和行秩總是相等的,因此它們可以簡單地稱作矩陣A的秩。通常表示為r(A),rk(A)或rank?A。
性質及定理:
定理:矩陣的行秩,列秩,秩都相等。
定理:初等變換不改變矩陣的秩。
定理:如果A可逆,則r(AB)=r(B),r(BA)=r(B)。
定理:矩陣的乘積的秩Rab=min{Ra,Rb}。
引理:設矩陣A=(aij)sxn的列秩等于A的列數n,則A的列秩,秩都等于n。
當r(A)=n-2時,最高階非零子式的階數=n-2,任何n-1階子式均為零,而伴隨陣中的各元素就是n-1階子式再加上個正負號,所以伴隨陣為0矩陣。
當r(A)=n-1時,最高階非零子式的階數=n-1,所以n-1階子式有可能不為零,所以伴隨陣有可能非零(等號成立時伴隨陣必為非零)。
在Python中,pandas是基于NumPy數組構建的,使數據預處理、清洗、分析工作變得更快更簡單。pandas是專門為處理表格和混雜數據設計的,而NumPy更適合處理統一的數值數組數據。
使用下面格式約定,引入pandas包:
pandas有兩個主要數據結構:Series和DataFrame。
Series是一種類似于一維數組的對象,它由 一組數據 (各種NumPy數據類型)以及一組與之相關的 數據標簽(即索引) 組成,即index和values兩部分,可以通過索引的方式選取Series中的單個或一組值。
pd.Series(list,index=[ ]) ,第二個參數是Series中數據的索引,可以省略。
Series類型索引、切片、運算的操作類似于ndarray,同樣的類似Python字典類型的操作,包括保留字in操作、使用.get()方法。
Series和ndarray之間的主要區別在于Series之間的操作會根據索引自動對齊數據。
DataFrame是一個表格型的數據類型,每列值類型可以不同,是最常用的pandas對象。DataFrame既有行索引也有列索引,它可以被看做由Series組成的字典(共用同一個索引)。DataFrame中的數據是以一個或多個二維塊存放的(而不是列表、字典或別的一維數據結構)。
pd.DataFrame(data,columns = [ ],index = [ ]) :columns和index為指定的列、行索引,并按照順序排列。
如果創建時指定了columns和index索引,則按照索引順序排列,并且如果傳入的列在數據中找不到,就會在結果中產生缺失值:
數據索引 :Series和DataFrame的索引是Index類型,Index對象是不可修改,可通過索引值或索引標簽獲取目標數據,也可通過索引使序列或數據框的計算、操作實現自動化對齊。索引類型index的常用方法:
重新索引 :能夠改變、重排Series和DataFrame索引,會創建一個新對象,如果某個索引值當前不存在,就引入缺失值。
df.reindex(index, columns ,fill_value, method, limit, copy ) :index/columns為新的行列自定義索引;fill_value為用于填充缺失位置的值;method為填充方法,ffill當前值向前填充,bfill向后填充;limit為最大填充量;copy 默認True,生成新的對象,False時,新舊相等不復制。
刪除指定索引 :默認返回的是一個新對象。
.drop() :能夠刪除Series和DataFrame指定行或列索引。
刪除一行或者一列時,用單引號指定索引,刪除多行時用列表指定索引。
如果刪除的是列索引,需要增加axis=1或axis='columns'作為參數。
增加inplace=True作為參數,可以就地修改對象,不會返回新的對象。
在pandas中,有多個方法可以選取和重新組合數據。對于DataFrame,表5-4進行了總結
適用于Series和DataFrame的基本統計分析函數 :傳入axis='columns'或axis=1將會按行進行運算。
.describe() :針對各列的多個統計匯總,用統計學指標快速描述數據的概要。
.sum() :計算各列數據的和
.count() :非NaN值的數量
.mean( )/.median() :計算數據的算術平均值、算術中位數
.var()/.std() :計算數據的方差、標準差
.corr()/.cov() :計算相關系數矩陣、協方差矩陣,是通過參數對計算出來的。Series的corr方法用于計算兩個Series中重疊的、非NA的、按索引對齊的值的相關系數。DataFrame的corr和cov方法將以DataFrame的形式分別返回完整的相關系數或協方差矩陣。
.corrwith() :利用DataFrame的corrwith方法,可以計算其列或行跟另一個Series或DataFrame之間的相關系數。傳入一個Series將會返回一個相關系數值Series(針對各列進行計算),傳入一個DataFrame則會計算按列名配對的相關系數。
.min()/.max() :計算數據的最小值、最大值
.diff() :計算一階差分,對時間序列很有效
.mode() :計算眾數,返回頻數最高的那(幾)個
.mean() :計算均值
.quantile() :計算分位數(0到1)
.isin() :用于判斷矢量化集合的成員資格,可用于過濾Series中或DataFrame列中數據的子集
適用于Series的基本統計分析函數,DataFrame[列名]返回的是一個Series類型。
.unique() :返回一個Series中的唯一值組成的數組。
.value_counts() :計算一個Series中各值出現的頻率。
.argmin()/.argmax() :計算數據最大值、最小值所在位置的索引位置(自動索引)
.idxmin()/.idxmax() :計算數據最大值、最小值所在位置的索引(自定義索引)
pandas提供了一些用于將表格型數據讀取為DataFrame對象的函數。下表對它們進行了總結,其中read_csv()、read_table()、to_csv()是用得最多的。
在數據分析和建模的過程中,相當多的時間要用在數據準備上:加載、清理、轉換以及重塑。
在許多數據分析工作中,缺失數據是經常發生的。對于數值數據,pandas使用浮點值NaN(np.nan)表示缺失數據,也可將缺失值表示為NA(Python內置的None值)。
替換值
.replace(old, new) :用新的數據替換老的數據,如果希望一次性替換多個值,old和new可以是列表。默認會返回一個新的對象,傳入inplace=True可以對現有對象進行就地修改。
刪除重復數據
利用函數或字典進行數據轉換
df.head():查詢數據的前五行
df.tail():查詢數據的末尾5行
pandas.cut()
pandas.qcut() 基于分位數的離散化函數?;谥然蚧跇颖痉治粩祵⒆兞侩x散化為等大小桶。
pandas.date_range() 返回一個時間索引
df.apply() 沿相應軸應用函數
Series.value_counts() 返回不同數據的計數值
df.aggregate()
df.reset_index() 重新設置index,參數drop = True時會丟棄原來的索引,設置新的從0開始的索引。常與groupby()一起用
numpy.zeros()
NumPy數組(1、數組初探)
更新
目前我的工作是將NumPy引入到Pyston中(一款Dropbox實現的Python編譯器/解釋器)。在工作過程中,我深入接觸了NumPy源碼,了解其實現并提交了PR修復NumPy的bug。在與NumPy源碼以及NumPy開發者打交道的過程中,我發現當今中文NumPy教程大部分都是翻譯或參考英文文檔,因此導致了許多疏漏。比如NumPy數組中的broadcast功能,幾乎所有中文文檔都翻譯為“廣播”。而NumPy的開發者之一,回復到“broadcast is a compound -- native English speakers can see that it's " broad" + "cast" = "cast (scatter, distribute) broadly, I guess "cast (scatter, distribute) broadly" probably is closer to the meaning(NumPy中的含義)"。有鑒于此,我打算啟動一個項目,以我對NumPy使用以及源碼層面的了解編寫一個系列的教程。
地址隨后會更新。CSDN的排版(列表)怎么顯示不正常了。。。
NumPy數組
NumPy數組是一個多維數組對象,稱為ndarray。其由兩部分組成:
實際的數據
描述這些數據的元數據
大部分操作僅針對于元數據,而不改變底層實際的數據。
關于NumPy數組有幾點必需了解的:
NumPy數組的下標從0開始。
同一個NumPy數組中所有元素的類型必須是相同的。
NumPy數組屬性
在詳細介紹NumPy數組之前。先詳細介紹下NumPy數組的基本屬性。NumPy數組的維數稱為秩(rank),一維數組的秩為1,二維數組的秩為2,以此類推。在NumPy中,每一個線性的數組稱為是一個軸(axes),秩其實是描述軸的數量。比如說,二維數組相當于是兩個一維數組,其中第一個一維數組中每個元素又是一個一維數組。所以一維數組就是NumPy中的軸(axes),第一個軸相當于是底層數組,第二個軸是底層數組里的數組。而軸的數量——秩,就是數組的維數。
NumPy的數組中比較重要ndarray對象屬性有:
ndarray.ndim:數組的維數(即數組軸的個數),等于秩。最常見的為二維數組(矩陣)。
ndarray.shape:數組的維度。為一個表示數組在每個維度上大小的整數元組。例如二維數組中,表示數組的“行數”和“列數”。ndarray.shape返回一個元組,這個元組的長度就是維度的數目,即ndim屬性。
ndarray.size:數組元素的總個數,等于shape屬性中元組元素的乘積。
ndarray.dtype:表示數組中元素類型的對象,可使用標準的Python類型創建或指定dtype。另外也可使用前一篇文章中介紹的NumPy提供的數據類型。
ndarray.itemsize:數組中每個元素的字節大小。例如,一個元素類型為float64的數組itemsiz屬性值為8(float64占用64個bits,每個字節長度為8,所以64/8,占用8個字節),又如,一個元素類型為complex32的數組item屬性為4(32/8)。
ndarray.data:包含實際數組元素的緩沖區,由于一般通過數組的索引獲取元素,所以通常不需要使用這個屬性。
創建數組
先來介紹創建數組。創建數組的方法有很多。如可以使用array函數從常規的Python列表和元組創造數組。所創建的數組類型由原序列中的元素類型推導而來。
Python發展至今,已經有越來越多的人使用python進行科學技術,NumPY是python中的一款高性能科學計算和數據分析的基礎包。
ndarray
ndarray(以下簡稱數組)是numpy的數組對象,需要注意的是,它是同構的,也就是說其中的所有元素必須是相同的類型。其中每個數組都有一個shape和dtype。
shape既是數組的形狀,比如
復制代碼
1 import numpy as np
2 from numpy.random import randn
3
4 arr = randn(12).reshape(3, 4)
5
6 arr
7
8 [[ 0.98655235 1.20830283 -0.72135183 0.40292924]
9 [-0.05059849 -0.02714873 -0.62775486 0.83222997]
10 [-0.84826071 -0.29484606 -0.76984902 0.09025059]]
11
12 arr.shape
13 (3, 4)
復制代碼
其中(3, 4)即代表arr是3行4列的數組,其中dtype為float64
一下函數可以用來創建數組
array將輸入數據轉換為ndarray,類型可制定也可默認
asarray將輸入轉換為ndarray
arange類似內置range
ones、ones_like根據形狀創建一個全1的數組、后者可以復制其他數組的形狀
zeros、zeros_like類似上面,全0
empty、empty_like創建新數組、只分配空間
eye、identity創建對角線為1的對角矩陣
數組的轉置和軸對稱
轉置是多維數組的基本運算之一。可以使用.T屬性或者transpose()來實現。.T就是進行軸對換而transpose則可以接收參數進行更豐富的變換
復制代碼
arr = np.arange(6).reshape((2,3))
print arr
[[0 1 2]
[3 4 5]]
print arr.T
[[0 3]
[1 4]
[2 5]]
arr = np.arange(24).reshape((2,3,4))
print arr
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
print arr.transpose((0,1,2))
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
復制代碼
數組的運算
大小相等的數組之間做任何算術運算都會將運算應用到元素級別。
復制代碼
1 arr = np.arange(9).reshape(3, 3)
2 print arr
3
4 [[0 1 2]
5 [3 4 5]
6 [6 7 8]]
7
8 print arr*arr
9
10 [[ 0 1 4]
11 [ 9 16 25]
12 [36 49 64]]
13
14 print arr+arr
15
16 [[ 0 2 4]
17 [ 6 8 10]
18 [12 14 16]]
19
20 print arr*4
21
22 [[ 0 4 8]
23 [12 16 20]
24 [24 28 32]]
復制代碼
numpy的簡單計算中,ufunc通用函數是對數組中的數據執行元素級運算的函數。
如:
復制代碼
arr = np.arange(6).reshape((2,3))
print arr
[[0 1 2]
[3 4 5]]
print np.square(arr)
[[ 0 1 4]
[ 9 16 25]]
復制代碼
類似的有:abs,fabs,sqrt,square,exp,log,sign,ceil,floor,rint,modf,isnan,isfinite,isinf,cos,cosh,sin,sinh,tan,tanh,
add,subtract,multiply,power,mod,equal,等等
標題名稱:python矩陣行秩函數,python求矩陣行數
本文地址:http://vcdvsql.cn/article34/heccpe.html
成都網站建設公司_創新互聯,為您提供網站策劃、App設計、域名注冊、電子商務、網頁設計公司、網站設計
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯