bl双性强迫侵犯h_国产在线观看人成激情视频_蜜芽188_被诱拐的少孩全彩啪啪漫画

怎么用XGBoost進行時間序列預測

本篇內容主要講解“怎么用XGBoost進行時間序列預測”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實用性強。下面就讓小編來帶大家學習“怎么用XGBoost進行時間序列預測”吧!

成都創新互聯專注于企業成都全網營銷、網站重做改版、忠縣網站定制設計、自適應品牌網站建設、H5技術成都做商城網站、集團公司官網建設、成都外貿網站建設公司、高端網站制作、響應式網頁設計等建站業務,價格優惠性價比高,為忠縣等各大城市提供網站開發制作服務。

XGBoost是梯度分類和回歸問題的有效實現。

它既快速又高效,即使在各種預測建模任務上也表現出色,即使不是最好的,也能在數據科學競賽的獲勝者(例如Kaggle的獲獎者)中廣受青睞。

XGBoost也可以用于時間序列預測,盡管它要求將時間序列數據集首先轉換為有監督的學習問題。它還需要使用一種專門的技術來評估模型,稱為前向驗證,因為使用k倍交叉驗證對模型進行評估會導致樂觀的結果。

在本教程中,您將發現如何開發XGBoost模型進行時間序列預測。完成本教程后,您將知道:

1、XGBoost是用于分類和回歸的梯度提升集成算法的實現。

2、可以使用滑動窗口表示將時間序列數據集轉換為監督學習。

3、如何使用XGBoost模型擬合,評估和進行預測,以進行時間序列預測。

教程概述

本教程分為三個部分:他們是:

1、XGBoost集成

2、時間序列數據準備

3、XGBoost用于時間序列預測

XGBoost集成

XGBoost是Extreme Gradient Boosting的縮寫,是隨機梯度提升機器學習算法的有效實現。隨機梯度增強算法(也稱為梯度增強機或樹增強)是一種功能強大的機器學習技術,可在各種具有挑戰性的機器學習問題上表現出色,甚至表現最佳。

它是決策樹算法的集合,其中新樹修復了那些已經屬于模型的樹的錯誤。將添加樹,直到無法對模型進行進一步的改進為止。XGBoost提供了隨機梯度提升算法的高效實現,并提供了一組模型超參數,這些參數旨在提供對模型訓練過程的控制。

XGBoost設計用于表格數據集的分類和回歸,盡管它可以用于時間序列預測。

首先,必須安裝XGBoost庫。您可以使用pip進行安裝,如下所示:

sudo pip install xgboost

一旦安裝,您可以通過運行以下代碼來確認它已成功安裝,并且您正在使用現代版本:

# xgboost  import xgboost  print("xgboost", xgboost.__version__)

運行代碼,您應該看到以下版本號或更高版本。

xgboost 1.0.1

盡管XGBoost庫具有自己的Python API,但我們可以通過XGBRegressor包裝器類將XGBoost模型與scikit-learn API結合使用。

可以實例化模型的實例,就像將其用于模型評估的任何其他scikit-learn類一樣使用。例如:

# define model  model = XGBRegressor()

現在我們已經熟悉了XGBoost,下面讓我們看一下如何為監督學習準備時間序列數據集。

時間序列數據準備

時間序列數據可以表述為監督學習。給定時間序列數據集的數字序列,我們可以將數據重組為看起來像監督學習的問題。我們可以通過使用以前的時間步長作為輸入變量,并使用下一個時間步長作為輸出變量來做到這一點。讓我們通過一個例子來具體說明。假設我們有一個時間序列,如下所示:

time, measure  1, 100  2, 110  3, 108  4, 115  5, 120

通過使用上一個時間步的值來預測下一個時間步的值,我們可以將此時間序列數據集重組為監督學習問題。通過這種方式重組時間序列數據集,數據將如下所示:

X, y  ?, 100  100, 110  110, 108  108, 115  115, 120  120, ?

請注意,時間列已刪除,某些數據行不可用于訓練模型,例如第一和最后一個。

這種表示稱為滑動窗口,因為輸入和預期輸出的窗口會隨著時間向前移動,從而為監督學習模型創建新的“樣本”。

有關準備時間序列預測數據的滑動窗口方法的更多信息。

在給定所需的輸入和輸出序列長度的情況下,我們可以在Pandas中使用shift()函數自動創建時間序列問題的新框架。

這將是一個有用的工具,因為它將允許我們使用機器學習算法探索時間序列問題的不同框架,以查看可能導致性能更好的模型。

下面的函數將一個時間序列作為具有一個或多個列的NumPy數組時間序列,并將其轉換為具有指定數量的輸入和輸出的監督學習問題。

# transform a time series dataset into a supervised learning dataset  def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):   n_vars = 1 if type(data) is list else data.shape[1]   df = DataFrame(data)   cols = list()   # input sequence (t-n, ... t-1)   for i in range(n_in, 0, -1):    cols.append(df.shift(i))   # forecast sequence (t, t+1, ... t+n)   for i in range(0, n_out):    cols.append(df.shift(-i))   # put it all together   agg = concat(cols, axis=1)   # drop rows with NaN values   if dropnan:    agg.dropna(inplace=True)   return agg.values

我們可以使用此函數為XGBoost準備時間序列數據集。

準備好數據集后,我們必須小心如何使用它來擬合和評估模型。

例如,將模型擬合未來的數據并預測過去是無效的。該模型必須在過去進行訓練并預測未來。這意味著不能使用在評估過程中將數據集隨機化的方法,例如k折交叉驗證。相反,我們必須使用一種稱為前向驗證的技術。在前向驗證中,首先通過選擇一個切點(例如除過去12個月外,所有數據均用于培訓,最近12個月用于測試。

如果我們有興趣進行單步預測,例如一個月后,我們可以通過對訓練數據集進行訓練并預測測試數據集的第一步來評估模型。然后,我們可以將來自測試集的真實觀測值添加到訓練數據集中,重新擬合模型,然后讓模型預測測試數據集中的第二步。對整個測試數據集重復此過程將為整個測試數據集提供一步式預測,可以從中計算出誤差度量以評估模型的技能。

下面的函數執行前向驗證。它使用時間序列數據集的整個監督學習版本以及用作測試集的行數作為參數。然后,它逐步通過測試集,調用xgboost_forecast()函數進行單步預測。計算錯誤度量,并將詳細信息返回以進行分析。

# walk-forward validation for univariate data  def walk_forward_validation(data, n_test):   predictions = list()   # split dataset   train, test = train_test_split(data, n_test)   # seed history with training dataset   history = [x for x in train]   # step over each time-step in the test set   for i in range(len(test)):    # split test row into input and output columns    testX, testtesty = test[i, :-1], test[i, -1]    # fit model on history and make a prediction    yhat = xgboost_forecast(history, testX)    # store forecast in list of predictions    predictions.append(yhat)    # add actual observation to history for the next loop    history.append(test[i])    # summarize progress    print('>expected=%.1f, predicted=%.1f' % (testy, yhat))   # estimate prediction error   error = mean_absolute_error(test[:, -1], predictions)   return error, test[:, 1], predictions

調用train_test_split()函數可將數據集拆分為訓練集和測試集。我們可以在下面定義此功能。

# split a univariate dataset into train/test sets  def train_test_split(data, n_test):  return data[:-n_test, :], data[-n_test:, :]

我們可以使用XGBRegressor類進行單步預測。下面的xgboost_forecast()函數通過將訓練數據集和測試輸入行作為輸入,擬合模型并進行單步預測來實現此目的。

# fit an xgboost model and make a one step prediction  def xgboost_forecast(train, testX):   # transform list into array   train = asarray(train)   # split into input and output columns   trainX, traintrainy = train[:, :-1], train[:, -1]   # fit model   model = XGBRegressor(objective='reg:squarederror', n_estimators=1000)   model.fit(trainX, trainy)   # make a one-step prediction   yhat = model.predict([testX])   return yhat[0]

現在,我們知道了如何準備時間序列數據以進行預測和評估XGBoost模型,接下來我們可以看看在實際數據集上使用XGBoost的情況。

XGBoost用于時間序列預測

在本節中,我們將探索如何使用XGBoost進行時間序列預測。我們將使用標準的單變量時間序列數據集,以使用該模型進行單步預測。您可以將本節中的代碼用作您自己項目的起點,并輕松地對其進行調整以適應多變量輸入,多變量預測和多步預測。我們將使用每日女性出生數據集,即三年中的每月出生數。

您可以從此處下載數據集,并將其放在文件名“ daily-total-female-births.csv”的當前工作目錄中。

數據集(每天女性出生總數.csv):

https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-total-female-births.csv

說明(每日女性出生總數):

https://raw.githubusercontent.com/jbrownlee/Datasets/master/daily-total-female-births.names

數據集的前幾行如下所示:

"Date","Births"  "1959-01-01",35  "1959-01-02",32  "1959-01-03",30  "1959-01-04",31  "1959-01-05",44  ...

首先,讓我們加載并繪制數據集。下面列出了完整的示例。

# load and plot the time series dataset  from pandas import read_csv  from matplotlib import pyplot  # load dataset  series = read_csv('daily-total-female-births.csv', header=0, index_col=0)  values = series.values  # plot dataset  pyplot.plot(values) pyplot.show()

運行示例將創建數據集的折線圖。我們可以看到沒有明顯的趨勢或季節性。

怎么用XGBoost進行時間序列預測

當預測最近的12個月時,持久性模型可以實現約6.7例出生的MAE。這提供了性能基準,在該基準之上可以認為模型是熟練的。

接下來,當對過去12個月的數據進行單步預測時,我們可以評估數據集上的XGBoost模型。

我們將僅使用前6個時間步長作為模型和默認模型超參數的輸入,除了我們將損失更改為'reg:squarederror'(以避免警告消息),并在集合中使用1,000棵樹(以避免學習不足) )。

下面列出了完整的示例。

# forecast monthly births with xgboost  from numpy import asarray  from pandas import read_csv from pandas import DataFrame from pandas import concat  from sklearn.metrics import mean_absolute_error  from xgboost import XGBRegressor  from matplotlib import pyplot   # transform a time series dataset into a supervised learning dataset  def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):   n_vars = 1 if type(data) is list else data.shape[1]   df = DataFrame(data)   cols = list()   # input sequence (t-n, ... t-1)   for i in range(n_in, 0, -1):    cols.append(df.shift(i))   # forecast sequence (t, t+1, ... t+n)   for i in range(0, n_out):    cols.append(df.shift(-i))   # put it all together   agg = concat(cols, axis=1)   # drop rows with NaN values   if dropnan:    agg.dropna(inplace=True)   return agg.values   # split a univariate dataset into train/test sets  def train_test_split(data, n_test):   return data[:-n_test, :], data[-n_test:, :] # fit an xgboost model and make a one step prediction  def xgboost_forecast(train, testX):   # transform list into array   train = asarray(train)   # split into input and output columns   trainX, traintrainy = train[:, :-1], train[:, -1]   # fit model   model = XGBRegressor(objective='reg:squarederror', n_estimators=1000)   model.fit(trainX, trainy)   # make a one-step prediction   yhat = model.predict(asarray([testX]))   return yhat[0]  # walk-forward validation for univariate data  def walk_forward_validation(data, n_test):   predictions = list()   # split dataset   train, test = train_test_split(data, n_test)   # seed history with training dataset   history = [x for x in train]   # step over each time-step in the test set   for i in range(len(test)):    # split test row into input and output columns    testX, testtesty = test[i, :-1], test[i, -1]    # fit model on history and make a prediction    yhat = xgboost_forecast(history, testX)    # store forecast in list of predictions    predictions.append(yhat)    # add actual observation to history for the next loop    history.append(test[i])    # summarize progress    print('>expected=%.1f, predicted=%.1f' % (testy, yhat))   # estimate prediction error   error = mean_absolute_error(test[:, -1], predictions)   return error, test[:, -1], predictions  # load the dataset  series = read_csv('daily-total-female-births.csv', header=0, index_col=0)  values = series.values  # transform the time series data into supervised learning  data = series_to_supervised(values, n_in=6)  # evaluate  mae, y, yhat = walk_forward_validation(data, 12)  print('MAE: %.3f' % mae)  # plot expected vs preducted  pyplot.plot(y, label='Expected')  pyplot.plot(yhat, label='Predicted')  pyplot.legend()  pyplot.show()

運行示例將報告測試集中每個步驟的期望值和預測值,然后報告所有預測值的MAE。

注意:由于算法或評估程序的隨機性,或者數值精度的差異,您的結果可能會有所不同。考慮運行該示例幾次并比較平均結果。

我們可以看到,該模型的性能優于持久性模型,MAE約為5.9,而MAE約為6.7

>expected=42.0, predicted=44.5  >expected=53.0, predicted=42.5  >expected=39.0, predicted=40.3  >expected=40.0, predicted=32.5  >expected=38.0, predicted=41.1  >expected=44.0, predicted=45.3  >expected=34.0, predicted=40.2  >expected=37.0, predicted=35.0  >expected=52.0, predicted=32.5  >expected=48.0, predicted=41.4  >expected=55.0, predicted=46.6  >expected=50.0, predicted=47.2  MAE: 5.957

創建線圖,比較數據集最后12個月的一系列期望值和預測值。這給出了模型在測試集上執行得如何的幾何解釋。

圖2

一旦選擇了最終的XGBoost模型配置,就可以最終確定模型并用于對新數據進行預測。這稱為樣本外預測,例如 超出訓練數據集進行預測。這與在模型評估期間進行預測是相同的:因為我們始終希望使用模型用于對新數據進行預測時所期望使用的相同過程來評估模型。下面的示例演示了在所有可用數據上擬合最終XGBoost模型并在數據集末尾進行單步預測的過程。

# finalize model and make a prediction for monthly births with xgboost  from numpy import asarray  from pandas import read_csv  from pandas import DataFrame  from pandas import concat  from xgboost import XGBRegressor   # transform a time series dataset into a supervised learning dataset  def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):   n_vars = 1 if type(data) is list else data.shape[1]   df = DataFrame(data)   cols = list()   # input sequence (t-n, ... t-1)   for i in range(n_in, 0, -1):    cols.append(df.shift(i))   # forecast sequence (t, t+1, ... t+n)   for i in range(0, n_out):    cols.append(df.shift(-i))   # put it all together   agg = concat(cols, axis=1)   # drop rows with NaN values   if dropnan:    agg.dropna(inplace=True)   return agg.values   # load the dataset  series = read_csv('daily-total-female-births.csv', header=0, index_col=0)  values = series.values  # transform the time series data into supervised learning  train = series_to_supervised(values, n_in=6)  # split into input and output columns  trainX, traintrainy = train[:, :-1], train[:, -1] # fit model  model = XGBRegressor(objective='reg:squarederror', n_estimators=1000)  model.fit(trainX, trainy)  # construct an input for a new preduction  row = values[-6:].flatten()  # make a one-step prediction  yhat = model.predict(asarray([row]))  print('Input: %s, Predicted: %.3f' % (row, yhat[0]))

運行示例將XGBoost模型適合所有可用數據。使用最近6個月的已知數據準備新的輸入行,并預測數據集結束后的下個月。

Input: [34 37 52 48 55 50], Predicted: 42.708

到此,相信大家對“怎么用XGBoost進行時間序列預測”有了更深的了解,不妨來實際操作一番吧!這里是創新互聯網站,更多相關內容可以進入相關頻道進行查詢,關注我們,繼續學習!

名稱欄目:怎么用XGBoost進行時間序列預測
分享路徑:http://vcdvsql.cn/article4/iipooe.html

成都網站建設公司_創新互聯,為您提供網站設計用戶體驗網站策劃虛擬主機小程序開發動態網站

廣告

聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯

搜索引擎優化