bl双性强迫侵犯h_国产在线观看人成激情视频_蜜芽188_被诱拐的少孩全彩啪啪漫画

怎么在python中利用opencv實現一個車道線檢測功能-創新互聯

這篇文章將為大家詳細講解有關怎么在python中利用opencv實現一個車道線檢測功能,文章內容質量較高,因此小編分享給大家做個參考,希望大家閱讀完這篇文章后對相關知識有一定的了解。

讓客戶滿意是我們工作的目標,不斷超越客戶的期望值來自于我們對這個行業的熱愛。我們立志把好的技術通過有效、簡單的方式提供給客戶,將通過不懈努力成為客戶在信息化領域值得信任、有價值的長期合作伙伴,公司提供的服務項目有:域名與空間、虛擬空間、營銷軟件、網站建設、淇濱網站維護、網站推廣。

實現思路:


1、canny邊緣檢測獲取圖中的邊緣信息;
2、霍夫變換尋找圖中直線;
3、繪制梯形感興趣區域獲得車前范圍;
4、得到并繪制車道線;


代碼實現:

import cv2
import numpy as np


def canny():
 gray = cv2.cvtColor(lane_image, cv2.COLOR_RGB2GRAY)
 #高斯濾波
 blur = cv2.GaussianBlur(gray, (5, 5), 0)
 #邊緣檢測
 canny_img = cv2.Canny(blur, 50, 150)
 return canny_img


def region_of_interest(r_image):
 h = r_image.shape[0]
 w = r_image.shape[1]
 # 這個區域不穩定,需要根據圖片更換
 poly = np.array([
 [(100, h), (500, h), (290, 180), (250, 180)]
 ])
 mask = np.zeros_like(r_image)
 # 繪制掩膜圖像
 cv2.fillPoly(mask, poly, 255)
 # 獲得ROI區域
 masked_image = cv2.bitwise_and(r_image, mask)
 return masked_image


if __name__ == '__main__':
 image = cv2.imread('test.jpg')
 lane_image = np.copy(image)
 canny = canny()
 cropped_image = region_of_interest(canny)
 cv2.imshow("result", cropped_image)
 cv2.waitKey(0)

霍夫變換加線性擬合改良:

代碼實現:


主要增加了根據斜率作線性擬合過濾無用點后連線的操作;

import cv2
import numpy as np


def canny():
 gray = cv2.cvtColor(lane_image, cv2.COLOR_RGB2GRAY)
 blur = cv2.GaussianBlur(gray, (5, 5), 0)

 canny_img = cv2.Canny(blur, 50, 150)
 return canny_img


def region_of_interest(r_image):
 h = r_image.shape[0]
 w = r_image.shape[1]

 poly = np.array([
 [(100, h), (500, h), (280, 180), (250, 180)]
 ])
 mask = np.zeros_like(r_image)
 cv2.fillPoly(mask, poly, 255)
 masked_image = cv2.bitwise_and(r_image, mask)
 return masked_image


def get_lines(img_lines):
 if img_lines is not None:
 for line in lines:
 for x1, y1, x2, y2 in line:
 # 分左右車道
 k = (y2 - y1) / (x2 - x1)
 if k < 0:
  lefts.append(line)
 else:
  rights.append(line)


def choose_lines(after_lines, slo_th): # 過濾斜率差別較大的點
 slope = [(y2 - y1) / (x2 - x1) for line in after_lines for x1, x2, y1, y2 in line] # 獲得斜率數組
 while len(after_lines) > 0:
 mean = np.mean(slope) # 計算平均斜率
 diff = [abs(s - mean) for s in slope] # 每條線斜率與平均斜率的差距
 idx = np.argmax(diff) # 找到較大斜率的索引
 if diff[idx] > slo_th: # 大于預設的閾值選取
 slope.pop(idx)
 after_lines.pop(idx)
 else:
 break

 return after_lines


def clac_edgepoints(points, y_min, y_max):
 x = [p[0] for p in points]
 y = [p[1] for p in points]

 k = np.polyfit(y, x, 1) # 曲線擬合的函數,找到xy的擬合關系斜率
 func = np.poly1d(k) # 斜率代入可以得到一個y=kx的函數

 x_min = int(func(y_min)) # y_min = 325其實是近似找了一個
 x_max = int(func(y_max))

 return [(x_min, y_min), (x_max, y_max)]


if __name__ == '__main__':
 image = cv2.imread('F:\\A_javaPro\\test.jpg')
 lane_image = np.copy(image)
 canny_img = canny()
 cropped_image = region_of_interest(canny_img)
 lefts = []
 rights = []
 lines = cv2.HoughLinesP(cropped_image, 1, np.pi / 180, 15, np.array([]), minLineLength=40, maxLineGap=20)
 get_lines(lines) # 分別得到左右車道線的圖片

 good_leftlines = choose_lines(lefts, 0.1) # 處理后的點
 good_rightlines = choose_lines(rights, 0.1)

 leftpoints = [(x1, y1) for left in good_leftlines for x1, y1, x2, y2 in left]
 leftpoints = leftpoints + [(x2, y2) for left in good_leftlines for x1, y1, x2, y2 in left]

 rightpoints = [(x1, y1) for right in good_rightlines for x1, y1, x2, y2 in right]
 rightpoints = rightpoints + [(x2, y2) for right in good_rightlines for x1, y1, x2, y2 in right]

 lefttop = clac_edgepoints(leftpoints, 180, image.shape[0]) # 要畫左右車道線的端點
 righttop = clac_edgepoints(rightpoints, 180, image.shape[0])

 src = np.zeros_like(image)

 cv2.line(src, lefttop[0], lefttop[1], (255, 255, 0), 7)
 cv2.line(src, righttop[0], righttop[1], (255, 255, 0), 7)

 cv2.imshow('line Image', src)
 src_2 = cv2.addWeighted(image, 0.8, src, 1, 0)
 cv2.imshow('Finally Image', src_2)

 cv2.waitKey(0)

關于怎么在python中利用opencv實現一個車道線檢測功能就分享到這里了,希望以上內容可以對大家有一定的幫助,可以學到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。

當前文章:怎么在python中利用opencv實現一個車道線檢測功能-創新互聯
分享路徑:http://vcdvsql.cn/article40/cseheo.html

成都網站建設公司_創新互聯,為您提供品牌網站建設域名注冊定制開發做網站微信公眾號云服務器

廣告

聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯

營銷型網站建設