原文標題:10 Python image manipulation tools.
成都創新互聯堅持“要么做到,要么別承諾”的工作理念,服務領域包括:成都網站設計、成都網站建設、企業官網、英文網站、手機端網站、網站推廣等服務,滿足客戶于互聯網時代的棗陽網站設計、移動媒體設計的需求,幫助企業找到有效的互聯網解決方案。努力成為您成熟可靠的網絡建設合作伙伴!
作者 | Parul Pandey
翻譯 | 安其羅喬爾、JimmyHua
今天,在我們的世界里充滿了數據,圖像成為構成這些數據的重要組成部分。但無論是用于何種用途,這些圖像都需要進行處理。圖像處理就是分析和處理數字圖像的過程,主要旨在提高其質量或從中提取一些信息,然后可以將其用于某種用途。
圖像處理中的常見任務包括顯示圖像,基本操作如裁剪、翻轉、旋轉等,圖像分割,分類和特征提取,圖像恢復和圖像識別。Python成為這種圖像處理任務是一個恰當選擇,這是因為它作為一種科學編程語言正在日益普及,并且在其生態系統中免費提供許多最先進的圖像處理工具供大家使用。
讓我們看一下可以用于圖像處理任務中的常用 Python 庫有哪些吧。
1.scikit-image
scikit-image是一個開源的Python包,適用于numpy數組。它實現了用于研究,教育和工業應用的算法和實用工具。即使是那些剛接觸Python生態系統的人,它也是一個相當簡單直接的庫。此代碼是由活躍的志愿者社區編寫的,具有高質量和同行評審的性質。
資源
文檔里記錄了豐富的例子和實際用例,閱讀下面的文檔:
用法
該包作為skimage導入,大多數功能都在子模塊中找的到。下面列舉一些skimage的例子:
圖像過濾
使用match_template函數進行模板匹配
你可以通過此處查看圖庫找到更多示例。
2. Numpy
Numpy是Python編程的核心庫之一,并為數組提供支持。圖像本質上是包含數據點像素的標準Numpy數組。因此,我們可以通過使用基本的NumPy操作,例如切片、掩膜和花式索引,來修改圖像的像素值。可以使用skimage加載圖像并使用matplotlib顯示圖像。
資源
Numpy的官方文檔頁面提供了完整的資源和文檔列表:
用法
使用Numpy來掩膜圖像.
3.Scipy
scipy是Python的另一個類似Numpy的核心科學模塊,可用于基本的圖像操作和處理任務。特別是子模塊scipy.ndimage,提供了在n維NumPy數組上操作的函數。該包目前包括線性和非線性濾波,二值形態學,B樣條插值和對象測量等功能函數。
資源
有關scipy.ndimage包提供的完整功能列表,請參閱下面的鏈接:
用法
使用SciPy通過高斯濾波器進行模糊:
4. PIL/ Pillow
PIL( Python圖像庫 )是Python編程語言的一個免費庫,它支持打開、操作和保存許多不同的文件格式的圖像。然而, 隨著2009年的最后一次發布,它的開發停滯不前。但幸運的是還有有Pillow,一個PIL積極開發的且更容易安裝的分支,它能運行在所有主要的操作系統,并支持Python3。這個庫包含了基本的圖像處理功能,包括點運算、使用一組內置卷積核的濾波和色彩空間的轉換。
資源
文檔中有安裝說明,以及涵蓋庫的每個模塊的示例:
用法
在 Pillow 中使用 ImageFilter 增強圖像:
5. OpenCV-Python
OpenCV( 開源計算機視覺庫 )是計算機視覺應用中應用最廣泛的庫之一 。OpenCV-Python 是OpenCV的python版API。OpenCV-Python的優點不只有高效,這源于它的內部組成是用C/C++編寫的,而且它還容易編寫和部署(因為前端是用Python包裝的)。這使得它成為執行計算密集型計算機視覺程序的一個很好的選擇。
資源
OpenCV-Python-Guide指南可以讓你使用OpenCV-Python更容易:
用法
下面是一個例子,展示了OpenCV-Python使用金字塔方法創建一個名為“Orapple”的新水果圖像融合的功能。
6. SimpleCV
SimpleCV 也是一個用于構建計算機視覺應用程序的開源框架。有了它,你就可以訪問幾個高性能的計算機視覺庫,如OpenCV,而且不需要先學習了解位深度、文件格式、顏色空間等。
它的學習曲線大大小于OpenCV,正如它們的口號所說“計算機視覺變得簡單”。一些支持SimpleCV的觀點有:
即使是初學者也可以編寫簡單的機器視覺測試攝像機、視頻文件、圖像和視頻流都是可互操作的資源
官方文檔非常容易理解,而且有大量的例子和使用案例去學習:
用法
7. Mahotas
Mahotas 是另一個計算機視覺和圖像處理的Python庫。它包括了傳統的圖像處理功能例如濾波和形態學操作以及更現代的計算機視覺功能用于特征計算,包括興趣點檢測和局部描述符。該接口是Python語言,適合于快速開發,但是算法是用C語言實現的,并根據速度進行了調優。Mahotas庫速度快,代碼簡潔,甚至具有最小的依賴性。通過原文閱讀它們的官方論文以獲得更多的了解。
資源
文檔包括安裝指導,例子,以及一些教程,可以更好的幫助你開始使用mahotas。
用法
Mahotas庫依賴于使用簡單的代碼來完成任務。關于‘Finding Wally’的問題,Mahotas做的很好并且代碼量很少。下面是源碼:
8. SimpleITK
ITK 或者 Insight Segmentation and Registration Toolkit是一個開源的跨平臺系統,為開發人員提供了一套廣泛的圖像分析軟件工具 。其中, SimpleITK是建立在ITK之上的簡化層,旨在促進其在快速原型設計、教育、解釋語言中的應用。SimpleITK 是一個圖像分析工具包,包含大量支持一般過濾操作、圖像分割和匹配的組件。SimpleITK本身是用C++寫的,但是對于包括Python以內的大部分編程語言都是可用的。
資源
大量的Jupyter Notebooks 表明了SimpleITK在教育和研究領域已經被使用。Notebook展示了用Python和R編程語言使用SimpleITK來進行交互式圖像分析。
用法
下面的動畫是用SimpleITK和Python創建的剛性CT/MR匹配過程的可視化 。點擊此處可查看源碼!
9. pgmagick
pgmagick是GraphicsMagick庫的一個基于python的包裝。 GraphicsMagick圖像處理系統有時被稱為圖像處理的瑞士軍刀。它提供了一個具有強大且高效的工具和庫集合,支持以88種主要格式(包括重要格式,如DPX、GIF、JPEG、JPEG-2000、PNG、PDF、PNM和TIFF)讀取、寫入和操作圖像。
資源
有一個專門用于PgMagick的Github庫 ,其中包含安裝和需求說明。還有關于這個的一個詳細的用戶指導:
用法
使用pgmagick可以進行的圖像處理活動很少,比如:
圖像縮放
邊緣提取
10. Pycairo
Pycairo是圖像處理庫cairo的一組Python捆綁。Cairo是一個用于繪制矢量圖形的2D圖形庫。矢量圖形很有趣,因為它們在調整大小或轉換時不會失去清晰度 。Pycairo是cairo的一組綁定,可用于從Python調用cairo命令。
資源
Pycairo的GitHub庫是一個很好的資源,有關于安裝和使用的詳細說明。還有一個入門指南,其中有一個關于Pycairo的簡短教程。
庫:指南:用法
使用Pycairo繪制線條、基本形狀和徑向梯度:
總結
有一些有用且免費的Python圖像處理庫可以使用,有的是眾所周知的,有的可能對你來說是新的,試著多去了解它們。
生成一張純色的圖片
先設置圖片的顏色,接著利用Image模塊的new方法新生成一張圖片,png格式的圖片需要設置成rgba,類似的還有rgb,L(灰度圖等),尺寸設定為640,480,這個可以根據自己的情況設定,顏色同樣如此。
批量生成圖片
上面生成了一張圖片,那要生成十張圖片呢,這種步驟一樣,只是顏色改變的,利用循環就可以解決。首先創建一個顏色列表,把要生成的圖片顏色放進去。接著循環獲取不同的顏色,保存的時候利用字符串拼接的方法改變圖片的名字。
本地生成的圖片
封裝成函數
前面的方法已經可以批量生成圖片了,為了通用性強一點,我們可以封裝成函數,把哪些可以改變的參數單獨抽離出來。尺寸也同樣,使用的時候,可以根據自己的需要定義顏色列表和尺寸。當然還有加一些提示用語和報錯兼容性,這里就不講了。
本地生成的圖片
Python圖像處理是一種簡單易學,功能強大的解釋型編程語言,它有簡潔明了的語法,高效率的高層數據結構,能夠簡單而有效地實現面向對象編程,下文進行對Python圖像處理進行說明。
當然,首先要感謝“戀花蝶”,是他的文章“用Python圖像處理 ” 幫我堅定了用Python和PIL解決問題的想法,對于PIL的一些介紹和基本操作,可以看看這篇文章。我這里主要是介紹點我在使用過程中的經驗。
PIL可以對圖像的顏色進行轉換,并支持諸如24位彩色、8位灰度圖和二值圖等模式,簡單的轉換可以通過Image.convert(mode)函數完 成,其中mode表示輸出的顏色模式。例如''L''表示灰度,''1''表示二值圖模式等。
但是利用convert函數將灰度圖轉換為二值圖時,是采用固定的閾 值127來實現的,即灰度高于127的像素值為1,而灰度低于127的像素值為0。為了能夠通過自定義的閾值實現灰度圖到二值圖的轉換,就要用到 Image.point函數。
深度剖析Python語法功能
深度說明Python應用程序特點
對Python數據庫進行學習研究
Python開發人員對Python經驗之談
對Python動態類型語言解析
Image.point函數有多種形式,這里只討論Image.point(table, mode),利用該函數可以通過查表的方式實現像素顏色的模式轉換。其中table為顏色轉換過程中的映射表,每個顏色通道應當有256個元素,而 mode表示所輸出的顏色模式,同樣的,''L''表示灰度,''1''表示二值圖模式。
可見,轉換過程的關鍵在于設計映射表,如果只是需要一個簡單的箝位值,可以將table中高于或低于箝位值的元素分別設為1與0。當然,由于這里的table并沒有什么特殊要求,所以可以通過對元素的特殊設定實現(0, 255)范圍內,任意需要的一對一映射關系。
示例代碼如下:
import Image # load a color image im = Image.open(''fun.jpg'') # convert to grey level image Lim = im.convert(''L'') Lim.save(''fun_Level.jpg'') # setup a converting table with constant threshold threshold = 80 table = [] for i in range(256): if i threshold: table.append(0) else: table.append(1) # convert to binary image by the table bim = Lim.point(table, ''1'') bim.save(''fun_binary.jpg'')
IT部分通常要完成的任務相當繁重但支撐這些工作的資源卻很少,這已經成為公開的秘密。任何承諾提高編碼效率、降低軟件總成本的IT解決方案都應該進行 周到的考慮。Python圖像處理所具有的一個顯著優勢就是可以在企業的軟件創建和維護階段節約大量資金,而這兩個階段的軟件成本占到了軟件整個生命周期中總成本 的50%到95%。
Python清晰可讀的語法使得軟件代碼具有異乎尋常的易讀性,甚至對那些不是最初接觸和開發原始項目的程序員都 能具有這樣的強烈感覺。雖然某些程序員反對在Python代碼中大量使用空格。
不過,幾乎人人都承認Python圖像處理的可讀性遠勝于C或者Java,后兩 者都采用了專門的字符標記代碼塊結構、循環、函數以及其他編程結構的開始和結束。提倡Python的人還宣稱,采用這些字符可能會產生顯著的編程風格差 異,使得那些負責維護代碼的人遭遇代碼可讀性方面的困難。轉載
網站欄目:圖像白化python函數,Python函數圖像
URL網址:http://vcdvsql.cn/article40/dsijoeo.html
成都網站建設公司_創新互聯,為您提供商城網站、微信小程序、外貿網站建設、軟件開發、域名注冊、網站收錄
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯