bl双性强迫侵犯h_国产在线观看人成激情视频_蜜芽188_被诱拐的少孩全彩啪啪漫画

如何理解分布式事務框架seata-golang通信模型

這篇文章將為大家詳細講解有關如何理解分布式事務框架seata-golang通信模型,文章內容質量較高,因此小編分享給大家做個參考,希望大家閱讀完這篇文章后對相關知識有一定的了解。

創新互聯長期為成百上千家客戶提供的網站建設服務,團隊從業經驗10年,關注不同地域、不同群體,并針對不同對象提供差異化的產品和服務;打造開放共贏平臺,與合作伙伴共同營造健康的互聯網生態環境。為本溪企業提供專業的網站設計、成都做網站本溪網站改版等技術服務。擁有10多年豐富建站經驗和眾多成功案例,為您定制開發。

一、簡介

Java 的世界里,大家廣泛使用的一個高性能網絡通信框架 netty,很多 RPC 框架都是基于 netty 來實現的。在 golang 的世界里,getty 也是一個類似 netty 的高性能網絡通信庫。getty 最初由 dubbogo 項目負責人于雨開發,作為底層通信庫在 dubbo-go 中使用。隨著 dubbo-go 捐獻給 apache 基金會,在社區小伙伴的共同努力下,getty 也最終進入到 apache 這個大家庭,并改名 dubbo-getty 。

二、如何基于 getty 實現 RPC 通信

getty 框架的整體模型圖如下:

如何理解分布式事務框架seata-golang通信模型

下面結合相關代碼,詳述 seata-golang 的 RPC 通信過程。

1. 建立連接

實現 RPC 通信,首先要建立網絡連接吧,我們從 client.go 開始看起。

func (c *client) connect() {
	var (
		err error
		ss  Session
	)

	for {
        // 建立一個 session 連接
		ss = c.dial()
		if ss == nil {
			// client has been closed
			break
		}
		err = c.newSession(ss)
		if err == nil {
            // 收發報文
			ss.(*session).run()
			// 此處省略部分代碼
      
			break
		}
		// don't distinguish between tcp connection and websocket connection. Because
		// gorilla/websocket/conn.go:(Conn)Close also invoke net.Conn.Close()
		ss.Conn().Close()
	}
}

connect() 方法通過 dial() 方法得到了一個 session 連接,進入 dial() 方法:

func (c *client) dial() Session {
	switch c.endPointType {
	case TCP_CLIENT:
		return c.dialTCP()
	case UDP_CLIENT:
		return c.dialUDP()
	case WS_CLIENT:
		return c.dialWS()
	case WSS_CLIENT:
		return c.dialWSS()
	}

	return nil
}

我們關注的是 TCP 連接,所以繼續進入 c.dialTCP() 方法:

func (c *client) dialTCP() Session {
	var (
		err  error
		conn net.Conn
	)

	for {
		if c.IsClosed() {
			return nil
		}
		if c.sslEnabled {
			if sslConfig, err := c.tlsConfigBuilder.BuildTlsConfig(); err == nil && sslConfig != nil {
				d := &net.Dialer{Timeout: connectTimeout}
				// 建立加密連接
				conn, err = tls.DialWithDialer(d, "tcp", c.addr, sslConfig)
			}
		} else {
            // 建立 tcp 連接
			conn, err = net.DialTimeout("tcp", c.addr, connectTimeout)
		}
		if err == nil && gxnet.IsSameAddr(conn.RemoteAddr(), conn.LocalAddr()) {
			conn.Close()
			err = errSelfConnect
		}
		if err == nil {
            // 返回一個 TCPSession
			return newTCPSession(conn, c)
		}

		log.Infof("net.DialTimeout(addr:%s, timeout:%v) = error:%+v", c.addr, connectTimeout, perrors.WithStack(err))
		<-wheel.After(connectInterval)
	}
}

至此,我們知道了 getty 如何建立 TCP 連接,并返回 TCPSession。

2. 收發報文

那它是怎么收發報文的呢,我們回到 connection 方法接著往下看,有這樣一行 ss.(*session).run(),在這行代碼之后代碼都是很簡單的操作,我們猜測這行代碼運行的邏輯里面一定包含收發報文的邏輯,接著進入 run() 方法:

func (s *session) run() {
	// 省略部分代碼
  
	go s.handleLoop()
	go s.handlePackage()
}

<br />這里起了兩個 goroutine,handleLoophandlePackage,看字面意思符合我們的猜想,進入 handleLoop() 方法:<br />

func (s *session) handleLoop() {
    // 省略部分代碼
  
	for {
		// A select blocks until one of its cases is ready to run.
		// It choose one at random if multiple are ready. Otherwise it choose default branch if none is ready.
		select {
		// 省略部分代碼
      
		case outPkg, ok = <-s.wQ:
			// 省略部分代碼

			iovec = iovec[:0]
			for idx := 0; idx < maxIovecNum; idx++ {
        // 通過 s.writer 將 interface{} 類型的 outPkg 編碼成二進制的比特
				pkgBytes, err = s.writer.Write(s, outPkg)
				// 省略部分代碼
        
				iovec = append(iovec, pkgBytes)

                //省略部分代碼
			}
            // 將這些二進制比特發送出去
			err = s.WriteBytesArray(iovec[:]...)
			if err != nil {
				log.Errorf("%s, [session.handleLoop]s.WriteBytesArray(iovec len:%d) = error:%+v",
					s.sessionToken(), len(iovec), perrors.WithStack(err))
				s.stop()
				// break LOOP
				flag = false
			}

		case <-wheel.After(s.period):
			if flag {
				if wsFlag {
					err := wsConn.writePing()
					if err != nil {
						log.Warnf("wsConn.writePing() = error:%+v", perrors.WithStack(err))
					}
				}
                // 定時執行的邏輯,心跳等
				s.listener.OnCron(s)
			}
		}
	}
}

通過上面的代碼,我們不難發現,handleLoop() 方法處理的是發送報文的邏輯,RPC 需要發送的消息首先由 s.writer 編碼成二進制比特,然后通過建立的 TCP 連接發送出去。這個 s.writer 對應的 Writer 接口是 RPC 框架必須要實現的一個接口。

繼續看 handlePackage() 方法:

func (s *session) handlePackage() {
    // 省略部分代碼

	if _, ok := s.Connection.(*gettyTCPConn); ok {
		if s.reader == nil {
			errStr := fmt.Sprintf("session{name:%s, conn:%#v, reader:%#v}", s.name, s.Connection, s.reader)
			log.Error(errStr)
			panic(errStr)
		}

		err = s.handleTCPPackage()
	} else if _, ok := s.Connection.(*gettyWSConn); ok {
		err = s.handleWSPackage()
	} else if _, ok := s.Connection.(*gettyUDPConn); ok {
		err = s.handleUDPPackage()
	} else {
		panic(fmt.Sprintf("unknown type session{%#v}", s))
	}
}

進入 handleTCPPackage() 方法:

func (s *session) handleTCPPackage() error {
    // 省略部分代碼

	conn = s.Connection.(*gettyTCPConn)
	for {
		// 省略部分代碼

		bufLen = 0
		for {
			// for clause for the network timeout condition check
			// s.conn.SetReadTimeout(time.Now().Add(s.rTimeout))
            // 從 TCP 連接中收到報文
			bufLen, err = conn.recv(buf)
			// 省略部分代碼
      
			break
		}
		// 省略部分代碼
    
        // 將收到的報文二進制比特寫入 pkgBuf
		pktBuf.Write(buf[:bufLen])
		for {
			if pktBuf.Len() <= 0 {
				break
			}
            // 通過 s.reader 將收到的報文解碼成 RPC 消息
			pkg, pkgLen, err = s.reader.Read(s, pktBuf.Bytes())
			// 省略部分代碼

      s.UpdateActive()
            // 將收到的消息放入 TaskQueue 供 RPC 消費端消費
			s.addTask(pkg)
			pktBuf.Next(pkgLen)
			// continue to handle case 5
		}
		if exit {
			break
		}
	}

	return perrors.WithStack(err)
}

從上面的代碼邏輯我們分析出,RPC 消費端需要將從 TCP 連接收到的二進制比特報文解碼成 RPC 能消費的消息,這個工作由 s.reader 實現,所以,我們要構建 RPC 通信層也需要實現 s.reader 對應的 Reader 接口。

3. 底層處理網絡報文的邏輯如何與業務邏輯解耦

我們都知道,netty 通過 boss 線程和 worker 線程實現了底層網絡邏輯和業務邏輯的解耦。那么,getty 是如何實現的呢?

handlePackage() 方法最后,我們看到,收到的消息被放入了 s.addTask(pkg) 這個方法,接著往下分析:

func (s *session) addTask(pkg interface{}) {
	f := func() {
		s.listener.OnMessage(s, pkg)
		s.incReadPkgNum()
	}
	if taskPool := s.EndPoint().GetTaskPool(); taskPool != nil {
		taskPool.AddTaskAlways(f)
		return
	}
	f()
}

pkg 參數傳遞到了一個匿名方法,這個方法最終放入了 taskPool。這個方法很關鍵,在我后來寫 seata-golang 代碼的時候,就遇到了一個坑,這個坑后面分析。

接著我們看一下 taskPool 的定義:

// NewTaskPoolSimple build a simple task pool
func NewTaskPoolSimple(size int) GenericTaskPool {
	if size < 1 {
		size = runtime.NumCPU() * 100
	}
	return &taskPoolSimple{
		work: make(chan task),
		sem:  make(chan struct{}, size),
		done: make(chan struct{}),
	}
}

構建了一個緩沖大小為 size (默認為  runtime.NumCPU() * 100) 的 channel sem。再看方法 AddTaskAlways(t task)

func (p *taskPoolSimple) AddTaskAlways(t task) {
	select {
	case <-p.done:
		return
	default:
	}

	select {
	case p.work <- t:
		return
	default:
	}
	select {
	case p.work <- t:
	case p.sem <- struct{}{}:
		p.wg.Add(1)
		go p.worker(t)
	default:
		goSafely(t)
	}
}

加入的任務,會先由 len(p.sem) 個 goroutine 去消費,如果沒有 goroutine 空閑,則會啟動一個臨時的 goroutine 去運行 t()。相當于有  len(p.sem) 個 goroutine 組成了 goroutine pool,pool 中的 goroutine 去處理業務邏輯,而不是由處理網絡報文的 goroutine 去運行業務邏輯,從而實現了解耦。寫 seata-golang 時遇到的一個坑,就是忘記設置 taskPool 造成了處理業務邏輯和處理底層網絡報文邏輯的 goroutine 是同一個,我在業務邏輯中阻塞等待一個任務完成時,阻塞了整個 goroutine,使得阻塞期間收不到任何報文。

4. 具體實現

下面的代碼見 getty.go:

// Reader is used to unmarshal a complete pkg from buffer
type Reader interface {
	Read(Session, []byte) (interface{}, int, error)
}

// Writer is used to marshal pkg and write to session
type Writer interface {
	// if @Session is udpGettySession, the second parameter is UDPContext.
	Write(Session, interface{}) ([]byte, error)
}

// ReadWriter interface use for handle application packages
type ReadWriter interface {
	Reader
	Writer
}
// EventListener is used to process pkg that received from remote session
type EventListener interface {
	// invoked when session opened
	// If the return error is not nil, @Session will be closed.
	OnOpen(Session) error

	// invoked when session closed.
	OnClose(Session)

	// invoked when got error.
	OnError(Session, error)

	// invoked periodically, its period can be set by (Session)SetCronPeriod
	OnCron(Session)

	// invoked when getty received a package. Pls attention that do not handle long time
	// logic processing in this func. You'd better set the package's maximum length.
	// If the message's length is greater than it, u should should return err in
	// Reader{Read} and getty will close this connection soon.
	//
	// If ur logic processing in this func will take a long time, u should start a goroutine
	// pool(like working thread pool in cpp) to handle the processing asynchronously. Or u
	// can do the logic processing in other asynchronous way.
	// !!!In short, ur OnMessage callback func should return asap.
	//
	// If this is a udp event listener, the second parameter type is UDPContext.
	OnMessage(Session, interface{})
}

通過對整個 getty 代碼的分析,我們只要實現  ReadWriter 來對 RPC  消息編解碼,再實現 EventListener 來處理 RPC 消息的對應的具體邏輯,將 ReadWriter 實現和 EventLister 實現注入到 RPC 的 Client 和 Server 端,則可實現 RPC 通信。

4.1 編解碼協議實現

下面是 seata 協議的定義:

如何理解分布式事務框架seata-golang通信模型

在 ReadWriter 接口的實現 RpcPackageHandler 中,調用 Codec 方法對消息體按照上面的格式編解碼:

// 消息編碼為二進制比特
func MessageEncoder(codecType byte, in interface{}) []byte {
	switch codecType {
	case SEATA:
		return SeataEncoder(in)
	default:
		log.Errorf("not support codecType, %s", codecType)
		return nil
	}
}

// 二進制比特解碼為消息體
func MessageDecoder(codecType byte, in []byte) (interface{}, int) {
	switch codecType {
	case SEATA:
		return SeataDecoder(in)
	default:
		log.Errorf("not support codecType, %s", codecType)
		return nil, 0
	}
}
4.2 Client 端實現

再來看 client 端 EventListener 的實現 RpcRemotingClient

func (client *RpcRemoteClient) OnOpen(session getty.Session) error {
	go func() 
		request := protocal.RegisterTMRequest{AbstractIdentifyRequest: protocal.AbstractIdentifyRequest{
			ApplicationId:           client.conf.ApplicationId,
			TransactionServiceGroup: client.conf.TransactionServiceGroup,
		}}
    // 建立連接后向 Transaction Coordinator 發起注冊 TransactionManager 的請求
		_, err := client.sendAsyncRequestWithResponse(session, request, RPC_REQUEST_TIMEOUT)
		if err == nil {
      // 將與 Transaction Coordinator 建立的連接保存在連接池供后續使用
			clientSessionManager.RegisterGettySession(session)
			client.GettySessionOnOpenChannel <- session.RemoteAddr()
		}
	}()

	return nil
}

// OnError ...
func (client *RpcRemoteClient) OnError(session getty.Session, err error) {
	clientSessionManager.ReleaseGettySession(session)
}

// OnClose ...
func (client *RpcRemoteClient) OnClose(session getty.Session) {
	clientSessionManager.ReleaseGettySession(session)
}

// OnMessage ...
func (client *RpcRemoteClient) OnMessage(session getty.Session, pkg interface{}) {
	log.Info("received message:{%v}", pkg)
	rpcMessage, ok := pkg.(protocal.RpcMessage)
	if ok {
		heartBeat, isHeartBeat := rpcMessage.Body.(protocal.HeartBeatMessage)
		if isHeartBeat && heartBeat == protocal.HeartBeatMessagePong {
			log.Debugf("received PONG from %s", session.RemoteAddr())
		}
	}

	if rpcMessage.MessageType == protocal.MSGTYPE_RESQUEST ||
		rpcMessage.MessageType == protocal.MSGTYPE_RESQUEST_ONEWAY {
		log.Debugf("msgId:%s, body:%v", rpcMessage.Id, rpcMessage.Body)
      
		// 處理事務消息,提交 or 回滾
		client.onMessage(rpcMessage, session.RemoteAddr())
	} else {
		resp, loaded := client.futures.Load(rpcMessage.Id)
		if loaded {
			response := resp.(*getty2.MessageFuture)
			response.Response = rpcMessage.Body
			response.Done <- true
			client.futures.Delete(rpcMessage.Id)
		}
	}
}

// OnCron ...
func (client *RpcRemoteClient) OnCron(session getty.Session) {
  // 發送心跳
	client.defaultSendRequest(session, protocal.HeartBeatMessagePing)
}

clientSessionManager.RegisterGettySession(session) 的邏輯將在下文中分析。

4.3 Server 端 Transaction Coordinator 實現

代碼見 DefaultCoordinator

func (coordinator *DefaultCoordinator) OnOpen(session getty.Session) error {
	log.Infof("got getty_session:%s", session.Stat())
	return nil
}

func (coordinator *DefaultCoordinator) OnError(session getty.Session, err error) {
	// 釋放 TCP 連接
  SessionManager.ReleaseGettySession(session)
	session.Close()
	log.Errorf("getty_session{%s} got error{%v}, will be closed.", session.Stat(), err)
}

func (coordinator *DefaultCoordinator) OnClose(session getty.Session) {
	log.Info("getty_session{%s} is closing......", session.Stat())
}

func (coordinator *DefaultCoordinator) OnMessage(session getty.Session, pkg interface{}) {
	log.Debugf("received message:{%v}", pkg)
	rpcMessage, ok := pkg.(protocal.RpcMessage)
	if ok {
		_, isRegTM := rpcMessage.Body.(protocal.RegisterTMRequest)
		if isRegTM {
      // 將 TransactionManager 信息和 TCP 連接建立映射關系
			coordinator.OnRegTmMessage(rpcMessage, session)
			return
		}

		heartBeat, isHeartBeat := rpcMessage.Body.(protocal.HeartBeatMessage)
		if isHeartBeat && heartBeat == protocal.HeartBeatMessagePing {
			coordinator.OnCheckMessage(rpcMessage, session)
			return
		}

		if rpcMessage.MessageType == protocal.MSGTYPE_RESQUEST ||
			rpcMessage.MessageType == protocal.MSGTYPE_RESQUEST_ONEWAY {
			log.Debugf("msgId:%s, body:%v", rpcMessage.Id, rpcMessage.Body)
			_, isRegRM := rpcMessage.Body.(protocal.RegisterRMRequest)
			if isRegRM {
        // 將 ResourceManager 信息和 TCP 連接建立映射關系
				coordinator.OnRegRmMessage(rpcMessage, session)
			} else {
				if SessionManager.IsRegistered(session) {
					defer func() {
						if err := recover(); err != nil {
							log.Errorf("Catch Exception while do RPC, request: %v,err: %w", rpcMessage, err)
						}
					}()
          // 處理事務消息,全局事務注冊、分支事務注冊、分支事務提交、全局事務回滾等
					coordinator.OnTrxMessage(rpcMessage, session)
				} else {
					session.Close()
					log.Infof("close a unhandled connection! [%v]", session)
				}
			}
		} else {
			resp, loaded := coordinator.futures.Load(rpcMessage.Id)
			if loaded {
				response := resp.(*getty2.MessageFuture)
				response.Response = rpcMessage.Body
				response.Done <- true
				coordinator.futures.Delete(rpcMessage.Id)
			}
		}
	}
}

func (coordinator *DefaultCoordinator) OnCron(session getty.Session) {

}

coordinator.OnRegTmMessage(rpcMessage, session) 注冊 Transaction Manager,coordinator.OnRegRmMessage(rpcMessage, session) 注冊 Resource Manager。具體邏輯分析見下文。

消息進入 coordinator.OnTrxMessage(rpcMessage, session) 方法,將按照消息的類型碼路由到具體的邏輯當中:

	switch msg.GetTypeCode() {
	case protocal.TypeGlobalBegin:
		req := msg.(protocal.GlobalBeginRequest)
		resp := coordinator.doGlobalBegin(req, ctx)
		return resp
	case protocal.TypeGlobalStatus:
		req := msg.(protocal.GlobalStatusRequest)
		resp := coordinator.doGlobalStatus(req, ctx)
		return resp
	case protocal.TypeGlobalReport:
		req := msg.(protocal.GlobalReportRequest)
		resp := coordinator.doGlobalReport(req, ctx)
		return resp
	case protocal.TypeGlobalCommit:
		req := msg.(protocal.GlobalCommitRequest)
		resp := coordinator.doGlobalCommit(req, ctx)
		return resp
	case protocal.TypeGlobalRollback:
		req := msg.(protocal.GlobalRollbackRequest)
		resp := coordinator.doGlobalRollback(req, ctx)
		return resp
	case protocal.TypeBranchRegister:
		req := msg.(protocal.BranchRegisterRequest)
		resp := coordinator.doBranchRegister(req, ctx)
		return resp
	case protocal.TypeBranchStatusReport:
		req := msg.(protocal.BranchReportRequest)
		resp := coordinator.doBranchReport(req, ctx)
		return resp
	default:
		return nil
	}
4.4 session manager 分析

Client 端同 Transaction Coordinator 建立連接起連接后,通過 clientSessionManager.RegisterGettySession(session) 將連接保存在 serverSessions = sync.Map{} 這個 map 中。map 的 key 為從 session 中獲取的 RemoteAddress 即 Transaction Coordinator 的地址,value 為 session。這樣,Client 端就可以通過 map 中的一個 session 來向 Transaction Coordinator 注冊 Transaction Manager 和 Resource Manager 了。具體代碼見 getty_client_session_manager.go

Transaction Manager 和 Resource Manager 注冊到 Transaction Coordinator 后,一個連接既有可能用來發送 TM 消息也有可能用來發送 RM 消息。我們通過 RpcContext 來標識一個連接信息:

type RpcContext struct {
	Version                 string
	TransactionServiceGroup string
	ClientRole              meta.TransactionRole
	ApplicationId           string
	ClientId                string
	ResourceSets            *model.Set
	Session                 getty.Session
}

當收到事務消息時,我們需要構造這樣一個 RpcContext 供后續事務處理邏輯使用。所以,我們會構造下列 map 來緩存映射關系:

var (
	// session -> transactionRole
	// TM will register before RM, if a session is not the TM registered,
	// it will be the RM registered
	session_transactionroles = sync.Map{}

	// session -> applicationId
	identified_sessions = sync.Map{}

	// applicationId -> ip -> port -> session
	client_sessions = sync.Map{}

	// applicationId -> resourceIds
	client_resources = sync.Map{}
)

這樣,Transaction Manager 和 Resource Manager 分別通過 coordinator.OnRegTmMessage(rpcMessage, session)coordinator.OnRegRmMessage(rpcMessage, session) 注冊到 Transaction Coordinator 時,會在上述 client_sessions map 中緩存 applicationId、ip、port 與 session 的關系,在 client_resources map 中緩存 applicationId 與 resourceIds(一個應用可能存在多個 Resource Manager) 的關系。在需要時,我們就可以通過上述映射關系構造一個 RpcContext。這部分的實現和 java 版 seata 有很大的不同,感興趣的可以深入了解一下。具體代碼見 getty_session_manager.go

至此,我們就分析完了 seata-golang 整個 RPC 通信模型的機制。

三、seata-golang 的未來

seata-golang  從今年 4 月份開始開發,到 8 月份基本實現和 java 版 seata 1.2 協議的互通,對 MySQL 數據庫實現了 AT 模式(自動協調分布式事務的提交回滾),實現了 TCC 模式,TC 端使用 mysql 存儲數據,使 TC 變成一個無狀態應用支持高可用部署。下圖展示了 AT 模式的原理:

如何理解分布式事務框架seata-golang通信模型

關于如何理解分布式事務框架seata-golang通信模型就分享到這里了,希望以上內容可以對大家有一定的幫助,可以學到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。

分享名稱:如何理解分布式事務框架seata-golang通信模型
文章轉載:http://vcdvsql.cn/article40/gdihho.html

成都網站建設公司_創新互聯,為您提供小程序開發自適應網站網站設計公司搜索引擎優化全網營銷推廣手機網站建設

廣告

聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯

微信小程序開發