bl双性强迫侵犯h_国产在线观看人成激情视频_蜜芽188_被诱拐的少孩全彩啪啪漫画

常見優化器的PyTorch實現是怎樣的

這篇文章將為大家詳細講解有關常見優化器的PyTorch實現是怎樣的,文章內容質量較高,因此小編分享給大家做個參考,希望大家閱讀完這篇文章后對相關知識有一定的了解。

創新互聯是由多位在大型網絡公司、廣告設計公司的優秀設計人員和策劃人員組成的一個具有豐富經驗的團隊,其中包括網站策劃、網頁美工、網站程序員、網頁設計師、平面廣告設計師、網絡營銷人員及形象策劃。承接:成都網站建設、網站設計、網站改版、網頁設計制作、網站建設與維護、網絡推廣、數據庫開發,以高性價比制作企業網站、行業門戶平臺等全方位的服務。

這里主要講不同常見優化器代碼的實現,以及在一個小數據集上做一個簡單的比較。

其中,SGD和SGDM,還有Adam是pytorch自帶的優化器,而RAdam是最近提出的一個說是Adam更強的優化器,但是一般情況下真正的大佬還在用SGDM來做優化器

導入必要庫:

import torchimport torch.nn as nnimport torch.nn.functional as Fimport torch.optim as optimimport matplotlib.pyplot as pltimport torch.utils.data as Datafrom torch.optim.optimizer import Optimizerimport math

主程序部分:

LR = 0.01BATCH_SIZE = 32EPOCH = 12
# fake datasetx = torch.unsqueeze(torch.linspace(-1, 1, 300), dim=1)y = x.pow(2) + 0.1 * torch.normal(torch.zeros(*x.size()))
torch_dataset = Data.TensorDataset(x, y)loader = Data.DataLoader(    dataset=torch_dataset,    batch_size=BATCH_SIZE,    shuffle=True,    num_workers=2)

class Net(nn.Module):    def __init__(self):        super(Net, self).__init__()        self.hidden = nn.Linear(1, 20)        self.prediction = nn.Linear(20, 1)
   def forward(self, x):        x = F.relu(self.hidden(x))        x = self.prediction(x)        return x

def main():    net_SGD = Net()    net_Momentum = Net()    net_Adam = Net()    net_RAdam = Net()    nets = [net_SGD, net_Momentum, net_Adam, net_RAdam]    opt_SGD = optim.SGD(net_SGD.parameters(), lr=LR)    opt_Momentum = optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.9)    opt_Adam = optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))    opt_RAdam = RAdam(net_RAdam.parameters(),lr=LR,weight_decay=0)    optimizers = [opt_SGD, opt_Momentum, opt_Adam, opt_RAdam]    loss_func = nn.MSELoss()    losses_his = [[], [], [], []]    # training    for epoch in range(EPOCH):        print('EPOCH:', epoch)        for step, (batch_x, batch_y) in enumerate(loader):            b_x = batch_x            b_y = batch_y            for net, opt, l_his in zip(nets, optimizers, losses_his):                out = net(b_x)                loss = loss_func(out, b_y)                opt.zero_grad()                loss.backward()                opt.step()                l_his.append(loss.item())    labels = ['SGD', 'Momentum', 'Adam','RAdam']    for i, l_his in enumerate(losses_his):        plt.plot(l_his, label=labels[i])    plt.legend(loc='best')    plt.xlabel('Steps')    plt.ylabel('Loss')    plt.ylim((0, 0.2))    plt.show()

if __name__ == '__main__':    main()

下圖是優化器的對比:

常見優化器的PyTorch實現是怎樣的

可以看出來,Adam的效果可以說是非常好的。然后SGDM其次,SGDM是大佬們經常會使用的,所以在這里雖然看起來SGDM效果不如Adam,但是依然推薦在項目中,嘗試一下SGDM的效果。

關于常見優化器的PyTorch實現是怎樣的就分享到這里了,希望以上內容可以對大家有一定的幫助,可以學到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。

網頁名稱:常見優化器的PyTorch實現是怎樣的
當前URL:http://vcdvsql.cn/article42/jhiehc.html

成都網站建設公司_創新互聯,為您提供定制開發動態網站標簽優化網站策劃響應式網站域名注冊

廣告

聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯

網站托管運營