bl双性强迫侵犯h_国产在线观看人成激情视频_蜜芽188_被诱拐的少孩全彩啪啪漫画

nosql的適用場景,nosql的特點

一、NoSQL數據庫簡介

Web1.0的時代,數據訪問量很有限,用一夫當關的高性能的單點服務器可以解決大部分問題。

成都創新互聯公司是一家集網站建設,崇信企業網站建設,崇信品牌網站建設,網站定制,崇信網站建設報價,網絡營銷,網絡優化,崇信網站推廣為一體的創新建站企業,幫助傳統企業提升企業形象加強企業競爭力。可充分滿足這一群體相比中小企業更為豐富、高端、多元的互聯網需求。同時我們時刻保持專業、時尚、前沿,時刻以成就客戶成長自我,堅持不斷學習、思考、沉淀、凈化自己,讓我們為更多的企業打造出實用型網站。

隨著Web2.0的時代的到來,用戶訪問量大幅度提升,同時產生了大量的用戶數據。加上后來的智能移動設備的普及,所有的互聯網平臺都面臨了巨大的性能挑戰。

NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,泛指非關系型的數據庫。

NoSQL 不依賴業務邏輯方式存儲,而以簡單的key-value模式存儲。因此大大的增加了數據庫的擴展能力。

Memcache Memcache Redis Redis MongoDB MongoDB 列式數據庫 列式數據庫 Hbase Hbase

HBase是Hadoop項目中的數據庫。它用于需要對大量的數據進行隨機、實時的讀寫操作的場景中。

HBase的目標就是處理數據量非常龐大的表,可以用普通的計算機處理超過10億行數據,還可處理有數百萬列元素的數據表。

Cassandra Cassandra

Apache Cassandra是一款免費的開源NoSQL數據庫,其設計目的在于管理由大量商用服務器構建起來的龐大集群上的海量數據集(數據量通常達到PB級別)。在眾多顯著特性當中,Cassandra最為卓越的長處是對寫入及讀取操作進行規模調整,而且其不強調主集群的設計思路能夠以相對直觀的方式簡化各集群的創建與擴展流程。

主要應用:社會關系,公共交通網絡,地圖及網絡拓譜(n*(n-1)/2)

高性能 NoSQL

關系數據庫經過幾十年的發展,已經非常成熟,但同時也存在不足:

表結構是強約束的,業務變更時擴充很麻煩。

如果對大數據量的表進行統計運算,I/O會很高,因為即使只針對某列進行運算,也需要將整行數據讀入內存。

全文搜索只能使用 Like 進行整表掃描,性能非常低。

針對這些不足,產生了不同的 NoSQL 解決方案,在某些場景下比關系數據庫更有優勢,但同時也犧牲了某些特性,所以不能片面的迷信某種方案,應將其作為 SQL 的有利補充。

NoSQL != No SQL,而是:

NoSQL = Not Only SQL

典型的 NoSQL 方案分為4類:

Redis 是典型,其 value 是具體的數據結構,包括 string, hash, list, set, sorted set, bitmap, hyperloglog,常被稱為數據結構服務器。

以 list 為例:

LPOP key 是移除并返回隊列左邊的第一個元素。

如果用關系數據庫就比較麻煩了,需要操作:

Redis 的缺點主要體現在不支持完成的ACID事務,只能保證隔離性和一致性,無法保證原子性和持久性。

最大的特點是 no-schema,無需在使用前定義字段,讀取一個不存在的字段也不會導致語法錯誤。

特點:

以電商為例,不同商品的屬性差異很大,如冰箱和電腦,這種差異性在關系數據庫中會有很大的麻煩,而使用文檔數據庫則非常方便。

文檔數據庫的主要缺點:

關系數據庫是按行來存儲的,列式數據庫是按照列來存儲數據。

按行存儲的優勢:

在某些場景下,這些優勢就成為劣勢了,例如,計算超重人員的數據,只需要讀取體重這一列進行統計即可,但行式存儲會將整行數據讀取到內存中,很浪費。

而列式存儲中,只需要讀取體重這列的數據即可,I/O 將大大減少。

除了節省I/O,列式存儲還有更高的壓縮比,可以節省存儲空間。普通行式數據庫的壓縮比在 3:1 到 5:1 左右,列式數據庫在 8:1 到 30:1,因為單個列的數據相似度更高。

列式存儲的隨機寫效率遠低于行式存儲,因為行式存儲時同一行多個列都存儲在連續空間中,而列式存儲將不同列存儲在不連續的空間。

一般將列式存儲應用在離線大數據分析統計場景,因為這時主要針對部分列進行操作,而且數據寫入后無須更新。

關系數據庫通過索引進行快速查詢,但在全文搜索的情景下,索引就不夠了,因為:

假設有一個交友網站,信息表如下:

需要匹配性別、地點、語言列。

需要匹配性別、地點、愛好列。

實際搜索中,各種排列組合非常多,關系數據庫很難支持。

全文搜索引擎是使用 倒排索引 技術,建立單詞到文檔的索引,例如上面的表信息建立倒排索引:

所以特別適合根據關鍵詞來查詢文檔內容。

上面介紹了幾種典型的NoSQL方案,及各自的適用場景和特點,您可以根據實際需求進行選擇。

常見NoSQL數據庫的應用場景是怎么樣的

文檔數據庫

源起:受Lotus Notes啟發。

數據模型:包含了key-value的文檔集合

例子:CouchDB, MongoDB

優點:數據模型自然,編程友好,快速開發,web友好,CRUD。

圖數據庫

源起: 歐拉和圖理論。

數據模型:節點和關系,也可處理鍵值對。

例子:AllegroGraph, InfoGrid, Neo4j

優點:解決復雜的圖問題。

關系數據庫

源起: E. F. Codd 在A Relational Model of Data for Large Shared Data Banks提出的

數據模型:各種關系

例子:VoltDB, Clustrix, MySQL

優點:高性能、可擴展的OLTP,支持SQL,物化視圖,支持事務,編程友好。

對象數據庫

源起:圖數據庫研究

數據模型:對象

例子:Objectivity, Gemstone

優點:復雜對象模型,快速鍵值訪問,鍵功能訪問,以及圖數據庫的優點。

Key-Value數據庫

源起:Amazon的論文 Dynamo 和 Distributed HashTables。

數據模型:鍵值對

例子:Membase, Riak

優點:處理大量數據,快速處理大量讀寫請求。編程友好。

BigTable類型數據庫

源起:Google的論文 BigTable。

數據模型:列簇,每一行在理論上都是不同的

例子:HBase, Hypertable, Cassandra

優點:處理大量數據,應對極高寫負載,高可用,支持跨數據中心, MapReduce。

數據結構服務

源起: ?

數據模型:字典操作,lists, sets和字符串值

例子:Redis

優點:不同于以前的任何數據庫

網格數據庫

源起:數據網格和元組空間研究。

數據模型:基于空間的架構

例子:GigaSpaces, Coherence

優點:適于事務處理的高性能和高擴展性

nosql是什么

NoSQL,泛指非關系型的數據庫。隨著互聯網web2.0網站的興起,傳統的關系數據庫在應付web2.0網站,特別是超大規模和高并發的SNS類型的web2.0純動態網站已經顯得力不從心,暴露了很多難以克服的問題,而非關系型的數據庫則由于其本身的特點得到了非常迅速的發展。NoSQL數據庫的產生就是為了解決大規模數據集合多重數據種類帶來的挑戰,尤其是大數據應用難題。

雖然NoSQL流行語火起來才短短一年的時間,但是不可否認,現在已經開始了第二代運動。盡管早期的堆棧代碼只能算是一種實驗,然而現在的系統已經更加的成熟、穩定。不過現在也面臨著一個嚴酷的事實:技術越來越成熟——以至于原來很好的NoSQL數據存儲不得不進行重寫,也有少數人認為這就是所謂的2.0版本。這里列出一些比較知名的工具,可以為大數據建立快速、可擴展的存儲庫。

NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,是一項全新的數據庫革命性運動,早期就有人提出,發展至2009年趨勢越發高漲。NoSQL的擁護者們提倡運用非關系型的數據存儲,相對于鋪天蓋地的關系型數據庫運用,這一概念無疑是一種全新的思維的注入。

對于NoSQL并沒有一個明確的范圍和定義,但是他們都普遍存在下面一些共同特征:

不需要預定義模式:不需要事先定義數據模式,預定義表結構。數據中的每條記錄都可能有不同的屬性和格式。當插入數據時,并不需要預先定義它們的模式。

無共享架構:相對于將所有數據存儲的存儲區域網絡中的全共享架構。NoSQL往往將數據劃分后存儲在各個本地服務器上。因為從本地磁盤讀取數據的性能往往好于通過網絡傳輸讀取數據的性能,從而提高了系統的性能。

彈性可擴展:可以在系統運行的時候,動態增加或者刪除結點。不需要停機維護,數據可以自動遷移。

分區:相對于將數據存放于同一個節點,NoSQL數據庫需要將數據進行分區,將記錄分散在多個節點上面。并且通常分區的同時還要做復制。這樣既提高了并行性能,又能保證沒有單點失效的問題。

異步復制:和RAID存儲系統不同的是,NoSQL中的復制,往往是基于日志的異步復制。這樣,數據就可以盡快地寫入一個節點,而不會被網絡傳輸引起遲延。缺點是并不總是能保證一致性,這樣的方式在出現故障的時候,可能會丟失少量的數據。

BASE:相對于事務嚴格的ACID特性,NoSQL數據庫保證的是BASE特性。BASE是最終一致性和軟事務。

NoSQL數據庫并沒有一個統一的架構,兩種NoSQL數據庫之間的不同,甚至遠遠超過兩種關系型數據庫的不同。可以說,NoSQL各有所長,成功的NoSQL必然特別適用于某些場合或者某些應用,在這些場合中會遠遠勝過關系型數據庫和其他的NoSQL。

nosql數據庫一般有哪幾種類型?分別用在什么場景

特點:

它們可以處理超大量的數據。

它們運行在便宜的PC服務器集群上。

PC集群擴充起來非常方便并且成本很低,避免了“sharding”操作的復雜性和成本。

它們擊碎了性能瓶頸。

NoSQL的支持者稱,通過NoSQL架構可以省去將Web或Java應用和數據轉換成SQL友好格式的時間,執行速度變得更快。

“SQL并非適用于所有的程序代碼,” 對于那些繁重的重復操作的數據,SQL值得花錢。但是當數據庫結構非常簡單時,SQL可能沒有太大用處。

沒有過多的操作。

雖然NoSQL的支持者也承認關系數據庫提供了無可比擬的功能集合,而且在數據完整性上也發揮絕對穩定,他們同時也表示,企業的具體需求可能沒有那么多。

Bootstrap支持

因為NoSQL項目都是開源的,因此它們缺乏供應商提供的正式支持。這一點它們與大多數開源項目一樣,不得不從社區中尋求支持。

優點:

易擴展

NoSQL數據庫種類繁多,但是一個共同的特點都是去掉關系數據庫的關系型特性。數據之間無關系,這樣就非常容易擴展。也無形之間,在架構的層面上帶來了可擴展的能力。

大數據量,高性能

NoSQL數據庫都具有非常高的讀寫性能,尤其在大數據量下,同樣表現優秀。這得益于它的無關系性,數據庫的結構簡單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對web2.0的交互頻繁的應用,Cache性能不高。而NoSQL的 Cache是記錄級的,是一種細粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。

靈活的數據模型

NoSQL無需事先為要存儲的數據建立字段,隨時可以存儲自定義的數據格式。而在關系數據庫里,增刪字段是一件非常麻煩的事情。如果是非常大數據量的表,增加字段簡直就是一個噩夢。這點在大數據量的web2.0時代尤其明顯。

高可用

NoSQL在不太影響性能的情況,就可以方便的實現高可用的架構。比如Cassandra,HBase模型,通過復制模型也能實現高可用。

主要應用:

Apache HBase

這個大數據管理平臺建立在谷歌強大的BigTable管理引擎基礎上。作為具有開源、Java編碼、分布式多個優勢的數據庫,Hbase最初被設計應用于Hadoop平臺,而這一強大的數據管理工具,也被Facebook采用,用于管理消息平臺的龐大數據。

Apache Storm

用于處理高速、大型數據流的分布式實時計算系統。Storm為Apache Hadoop添加了可靠的實時數據處理功能,同時還增加了低延遲的儀表板、安全警報,改進了原有的操作方式,幫助企業更有效率地捕獲商業機會、發展新業務。

Apache Spark

該技術采用內存計算,從多迭代批量處理出發,允許將數據載入內存做反復查詢,此外還融合數據倉庫、流處理和圖計算等多種計算范式,Spark用Scala語言實現,構建在HDFS上,能與Hadoop很好的結合,而且運行速度比MapReduce快100倍。

Apache Hadoop

該技術迅速成為了大數據管理標準之一。當它被用來管理大型數據集時,對于復雜的分布式應用,Hadoop體現出了非常好的性能,平臺的靈活性使它可以運行在商用硬件系統,它還可以輕松地集成結構化、半結構化和甚至非結構化數據集。

Apache Drill

你有多大的數據集?其實無論你有多大的數據集,Drill都能輕松應對。通過支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺,允許大規模數據吞吐,而且能很快得出結果。

Apache Sqoop

也許你的數據現在還被鎖定于舊系統中,Sqoop可以幫你解決這個問題。這一平臺采用并發連接,可以將數據從關系數據庫系統方便地轉移到Hadoop中,可以自定義數據類型以及元數據傳播的映射。事實上,你還可以將數據(如新的數據)導入到HDFS、Hive和Hbase中。

Apache Giraph

這是功能強大的圖形處理平臺,具有很好可擴展性和可用性。該技術已經被Facebook采用,Giraph可以運行在Hadoop環境中,可以將它直接部署到現有的Hadoop系統中。通過這種方式,你可以得到強大的分布式作圖能力,同時還能利用上現有的大數據處理引擎。

Cloudera Impala

Impala模型也可以部署在你現有的Hadoop群集上,監視所有的查詢。該技術和MapReduce一樣,具有強大的批處理能力,而且Impala對于實時的SQL查詢也有很好的效果,通過高效的SQL查詢,你可以很快的了解到大數據平臺上的數據。

Gephi

它可以用來對信息進行關聯和量化處理,通過為數據創建功能強大的可視化效果,你可以從數據中得到不一樣的洞察力。Gephi已經支持多個圖表類型,而且可以在具有上百萬個節點的大型網絡上運行。Gephi具有活躍的用戶社區,Gephi還提供了大量的插件,可以和現有系統完美的集成到一起,它還可以對復雜的IT連接、分布式系統中各個節點、數據流等信息進行可視化分析。

MongoDB

這個堅實的平臺一直被很多組織推崇,它在大數據管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創建,現在該技術已經被廣泛的應用于大數據管理。MongoDB是一個應用開源技術開發的NoSQL數據庫,可以用于在JSON這樣的平臺上存儲和處理數據。目前,紐約時報、Craigslist以及眾多企業都采用了MongoDB,幫助他們管理大型數據集。(Couchbase服務器也作為一個參考)。

十大頂尖公司:

Amazon Web Services

Forrester將AWS稱為“云霸主”,談到云計算領域的大數據,那就不得不提到亞馬遜。該公司的Hadoop產品被稱為EMR(Elastic Map Reduce),AWS解釋這款產品采用了Hadoop技術來提供大數據管理服務,但它不是純開源Hadoop,經過修改后現在被專門用在AWS云上。

Forrester稱EMR有很好的市場前景。很多公司基于EMR為客戶提供服務,有一些公司將EMR應用于數據查詢、建模、集成和管理。而且AWS還在創新,Forrester稱未來EMR可以基于工作量的需要自動縮放調整大小。亞馬遜計劃為其產品和服務提供更強大的EMR支持,包括它的RedShift數據倉庫、新公布的Kenesis實時處理引擎以及計劃中的NoSQL數據庫和商業智能工具。不過AWS還沒有自己的Hadoop發行版。

Cloudera

Cloudera有開源Hadoop的發行版,這個發行版采用了Apache Hadoop開源項目的很多技術,不過基于這些技術的發行版也有很大的進步。Cloudera為它的Hadoop發行版開發了很多功能,包括Cloudera管理器,用于管理和監控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發行版基于開源Hadoop,但也不是純開源的產品。當Cloudera的客戶需要Hadoop不具備的某些功能時,Cloudera的工程師們就會實現這些功能,或者找一個擁有這項技術的合作伙伴。Forrester表示:“Cloudera的創新方法忠于核心Hadoop,但因為其可實現快速創新并積極滿足客戶需求,這一點使它不同于其他那些供應商。”目前,Cloudera的平臺已經擁有200多個付費客戶,一些客戶在Cloudera的技術支持下已經可以跨1000多個節點實現對PB級數據的有效管理。

Hortonworks

和Cloudera一樣,Hortonworks是一個純粹的Hadoop技術公司。與Cloudera不同的是,Hortonworks堅信開源Hadoop比任何其他供應商的Hadoop發行版都要強大。Hortonworks的目標是建立Hadoop生態圈和Hadoop用戶社區,推進開源項目的發展。Hortonworks平臺和開源Hadoop聯系緊密,公司管理人員表示這會給用戶帶來好處,因為它可以防止被供應商套牢(如果Hortonworks的客戶想要離開這個平臺,他們可以輕松轉向其他開源平臺)。這并不是說Hortonworks完全依賴開源Hadoop技術,而是因為該公司將其所有開發的成果回報給了開源社區,比如Ambari,這個工具就是由Hortonworks開發而成,用來填充集群管理項目漏洞。Hortonworks的方案已經得到了Teradata、Microsoft、Red Hat和SAP這些供應商的支持。

IBM

當企業考慮一些大的IT項目時,很多人首先會想到IBM。IBM是Hadoop項目的主要參與者之一,Forrester稱IBM已有100多個Hadoop部署,它的很多客戶都有PB級的數據。IBM在網格計算、全球數據中心和企業大數據項目實施等眾多領域有著豐富的經驗。“IBM計劃繼續整合SPSS分析、高性能計算、BI工具、數據管理和建模、應對高性能計算的工作負載管理等眾多技術。”

Intel

和AWS類似,英特爾不斷改進和優化Hadoop使其運行在自己的硬件上,具體來說,就是讓Hadoop運行在其至強芯片上,幫助用戶打破Hadoop系統的一些限制,使軟件和硬件結合的更好,英特爾的Hadoop發行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個產品,所以公司在未來還有很多改進的可能,英特爾和微軟都被認為是Hadoop市場上的潛力股。

MapR Technologies

MapR的Hadoop發行版目前為止也許是最好的了,不過很多人可能都沒有聽說過。Forrester對Hadoop用戶的調查顯示,MapR的評級最高,其發行版在架構和數據處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發行版中。例如網絡文件系統(NFS)、災難恢復以及高可用性功能。Forrester說MapR在Hadoop市場上沒有Cloudera和Hortonworks那樣的知名度,MapR要成為一個真正的大企業,還需要加強伙伴關系和市場營銷。

Microsoft

微軟在開源軟件問題上一直很低調,但在大數據形勢下,它不得不考慮讓Windows也兼容Hadoop,它還積極投入到開源項目中,以更廣泛地推動Hadoop生態圈的發展。我們可以在微軟的公共云Windows Azure HDInsight產品中看到其成果。微軟的Hadoop服務基于Hortonworks的發行版,而且是為Azure量身定制的。

微軟也有一些其他的項目,包括名為Polybase的項目,讓Hadoop查詢實現了SQLServer查詢的一些功能。Forrester說:“微軟在數據庫、數據倉庫、云、OLAP、BI、電子表格(包括PowerPivot)、協作和開發工具市場上有很大優勢,而且微軟擁有龐大的用戶群,但要在Hadoop這個領域成為行業領導者還有很遠的路要走。”

Pivotal Software

EMC和Vmware部分大數據業務分拆組合產生了Pivotal。Pivotal一直努力構建一個性能優越的Hadoop發行版,為此,Pivotal在開源Hadoop的基礎上又添加了一些新的工具,包括一個名為HAWQ的SQL引擎以及一個專門解決大數據問題的Hadoop應用。Forrester稱Pivotal Hadoop平臺的優勢在于它整合了Pivotal、EMC、Vmware的眾多技術,Pivotal的真正優勢實際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶還不到100個,而且大多是中小型客戶。

Teradata

對于Teradata來說,Hadoop既是一種威脅也是一種機遇。數據管理,特別是關于SQL和關系數據庫這一領域是Teradata的專長。所以像Hadoop這樣的NoSQL平臺崛起可能會威脅到Teradata。相反,Teradata接受了Hadoop,通過與Hortonworks合作,Teradata在Hadoop平臺集成了SQL技術,這使Teradata的客戶可以在Hadoop平臺上方便地使用存儲在Teradata數據倉庫中的數據。

AMPLab

通過將數據轉變為信息,我們才可以理解世界,而這也正是AMPLab所做的。AMPLab致力于機器學習、數據挖掘、數據庫、信息檢索、自然語言處理和語音識別等多個領域,努力改進對信息包括不透明數據集內信息的甄別技術。除了Spark,開源分布式SQL查詢引擎Shark也源于AMPLab,Shark具有極高的查詢效率,具有良好的兼容性和可擴展性。近幾年的發展使計算機科學進入到全新的時代,而AMPLab為我們設想一個運用大數據、云計算、通信等各種資源和技術靈活解決難題的方案,以應對越來越復雜的各種難題。

nosql能夠用再哪些場景

nosql分類太多了,下面列舉幾個比較常見的:

Redis:非常適合需要表達時間線的web服務,例如微博

Cassandra:只有順序寫,沒有隨機寫的設計,滿足高負荷情形的性能需求

MongoDB:面向文檔,擅長處理非結構化數據

Neo4J:可以快速實現基于圖的計算(如果用SQL計算可能花更長的時間)

希望對你所有幫助。

文章題目:nosql的適用場景,nosql的特點
URL分享:http://vcdvsql.cn/article48/dsigjep.html

成都網站建設公司_創新互聯,為您提供企業建站品牌網站建設建站公司網頁設計公司GoogleChatGPT

廣告

聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯

綿陽服務器托管