Dim?imgPhoto?As?System.Drawing.Image??=?System.Drawing.Image.FromFile("圖片路徑名")?
站在用戶的角度思考問題,與客戶深入溝通,找到船營網站設計與船營網站推廣的解決方案,憑借多年的經驗,讓設計與互聯網技術結合,創造個性化、用戶體驗好的作品,建站類型包括:成都網站建設、成都做網站、企業官網、英文網站、手機端網站、網站推廣、國際域名空間、雅安服務器托管、企業郵箱。業務覆蓋船營地區。
Dim?imgWidth?As?Integer?=?imgPhoto.Width??
Dim?imgHeight?As?Integer=?imgPhoto.Height
題主看懂了就采個納吧~
用一個picturebox控件再加一個Lable控件寫一個控件
或者跟游戲人間說的,做幾張帶數字的圖片,并添加到picturebox
圖像二值化的目的是最大限度的將圖象中感興趣的部分保留下來,在很多情況下,也是進行圖像分析、特征提取與模式識別之前的必要的圖像預處理過程。這個看似簡單的問題,在過去的四十年里受到國內外學者的廣泛關注,產生了數以百計的閾值選取方法,但如同其他圖像分割算法一樣,沒有一個現有方法對各種各樣的圖像都能得到令人滿意的結果。
本文針對幾種經典而常用的二值發放進行了簡單的討論并給出了其vb.net 實現。
1、P-Tile法
Doyle于1962年提出的P-Tile (即P分位數法)可以說是最古老的一種閾值選取方法。該方法根據先驗概率來設定閾值,使得二值化后的目標或背景像素比例等于先驗概率,該方法簡單高效,但是對于先驗概率難于估計的圖像卻無能為力。
2、OTSU 算法(大津法)
OSTU算法可以說是自適應計算單閾值(用來轉換灰度圖像為二值圖像)的簡單高效方法。1978 OTSU年提出的最大類間方差法以其計算簡單、穩定有效,一直廣為使用。
3、迭代法(最佳閥值法)
(1). 求出圖象的最大灰度值和最小灰度值,分別記為Zl和Zk,令初始閾值為:
(2). 根據閾值TK將圖象分割為前景和背景,分別求出兩者的平均灰度值Z0和ZB:
式中,Z(i,j)是圖像上(i,j)點的象素值,N(i,j)是(i,j)點的權值,一般取1。
(3). 若TK=TK+1,則所得即為閾值,否則轉2,迭代計算。
4、一維最大熵閾值法
它的思想是統計圖像中每一個灰度級出現的概率 ,計算該灰度級的熵 ,假設以灰度級T分割圖像,圖像中低于T灰度級的像素點構成目標物體(O),高于灰度級T的像素點構成背景(B),那么各個灰度級在本區的分布概率為:
O區: i=1,2……,t
B區: i=t+1,t+2……L-1
上式中的 ,這樣對于數字圖像中的目標和背景區域的熵分別為:
對圖像中的每一個灰度級分別求取W=H0 +HB,選取使W最大的灰度級作為分割圖像的閾值,這就是一維最大熵閾值圖像分割法。
當前名稱:vb.net數字圖片對比 vb識別圖片中的數字實例
本文來源:http://vcdvsql.cn/article6/doodhog.html
成都網站建設公司_創新互聯,為您提供電子商務、網站改版、網站內鏈、網站制作、網站策劃、服務器托管
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯