這篇文章主要為大家展示了“PyTorch上如何實現卷積神經網絡CNN”,內容簡而易懂,條理清晰,希望能夠幫助大家解決疑惑,下面讓小編帶領大家一起研究并學習一下“PyTorch上如何實現卷積神經網絡CNN”這篇文章吧。
一、卷積神經網絡
卷積神經網絡(ConvolutionalNeuralNetwork,CNN)最初是為解決圖像識別等問題設計的,CNN現在的應用已經不限于圖像和視頻,也可用于時間序列信號,比如音頻信號和文本數據等。CNN作為一個深度學習架構被提出的最初訴求是降低對圖像數據預處理的要求,避免復雜的特征工程。在卷積神經網絡中,第一個卷積層會直接接受圖像像素級的輸入,每一層卷積(濾波器)都會提取數據中最有效的特征,這種方法可以提取到圖像中最基礎的特征,而后再進行組合和抽象形成更高階的特征,因此CNN在理論上具有對圖像縮放、平移和旋轉的不變性。
卷積神經網絡CNN的要點就是局部連接(LocalConnection)、權值共享(WeightsSharing)和池化層(Pooling)中的降采樣(Down-Sampling)。其中,局部連接和權值共享降低了參數量,使訓練復雜度大大下降并減輕了過擬合。同時權值共享還賦予了卷積網絡對平移的容忍性,池化層降采樣則進一步降低了輸出參數量并賦予模型對輕度形變的容忍性,提高了模型的泛化能力。可以把卷積層卷積操作理解為用少量參數在圖像的多個位置上提取相似特征的過程。
二、代碼實現
import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.data as Data import torchvision import matplotlib.pyplot as plt torch.manual_seed(1) EPOCH = 1 BATCH_SIZE = 50 LR = 0.001 DOWNLOAD_MNIST = True # 獲取訓練集dataset training_data = torchvision.datasets.MNIST( root='./mnist/', # dataset存儲路徑 train=True, # True表示是train訓練集,False表示test測試集 transform=torchvision.transforms.ToTensor(), # 將原數據規范化到(0,1)區間 download=DOWNLOAD_MNIST, ) # 打印MNIST數據集的訓練集及測試集的尺寸 print(training_data.train_data.size()) print(training_data.train_labels.size()) # torch.Size([60000, 28, 28]) # torch.Size([60000]) plt.imshow(training_data.train_data[0].numpy(), cmap='gray') plt.title('%i' % training_data.train_labels[0]) plt.show() # 通過torchvision.datasets獲取的dataset格式可直接可置于DataLoader train_loader = Data.DataLoader(dataset=training_data, batch_size=BATCH_SIZE, shuffle=True) # 獲取測試集dataset test_data = torchvision.datasets.MNIST(root='./mnist/', train=False) # 取前2000個測試集樣本 test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1), volatile=True).type(torch.FloatTensor)[:2000]/255 # (2000, 28, 28) to (2000, 1, 28, 28), in range(0,1) test_y = test_data.test_labels[:2000] class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Sequential( # (1,28,28) nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2), # (16,28,28) # 想要con2d卷積出來的圖片尺寸沒有變化, padding=(kernel_size-1)/2 nn.ReLU(), nn.MaxPool2d(kernel_size=2) # (16,14,14) ) self.conv2 = nn.Sequential( # (16,14,14) nn.Conv2d(16, 32, 5, 1, 2), # (32,14,14) nn.ReLU(), nn.MaxPool2d(2) # (32,7,7) ) self.out = nn.Linear(32*7*7, 10) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = x.view(x.size(0), -1) # 將(batch,32,7,7)展平為(batch,32*7*7) output = self.out(x) return output cnn = CNN() print(cnn) ''''' CNN ( (conv1): Sequential ( (0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) (1): ReLU () (2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1)) ) (conv2): Sequential ( (0): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) (1): ReLU () (2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1)) ) (out): Linear (1568 -> 10) ) ''' optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) loss_function = nn.CrossEntropyLoss() for epoch in range(EPOCH): for step, (x, y) in enumerate(train_loader): b_x = Variable(x) b_y = Variable(y) output = cnn(b_x) loss = loss_function(output, b_y) optimizer.zero_grad() loss.backward() optimizer.step() if step % 100 == 0: test_output = cnn(test_x) pred_y = torch.max(test_output, 1)[1].data.squeeze() accuracy = sum(pred_y == test_y) / test_y.size(0) print('Epoch:', epoch, '|Step:', step, '|train loss:%.4f'%loss.data[0], '|test accuracy:%.4f'%accuracy) test_output = cnn(test_x[:10]) pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze() print(pred_y, 'prediction number') print(test_y[:10].numpy(), 'real number') ''''' Epoch: 0 |Step: 0 |train loss:2.3145 |test accuracy:0.1040 Epoch: 0 |Step: 100 |train loss:0.5857 |test accuracy:0.8865 Epoch: 0 |Step: 200 |train loss:0.0600 |test accuracy:0.9380 Epoch: 0 |Step: 300 |train loss:0.0996 |test accuracy:0.9345 Epoch: 0 |Step: 400 |train loss:0.0381 |test accuracy:0.9645 Epoch: 0 |Step: 500 |train loss:0.0266 |test accuracy:0.9620 Epoch: 0 |Step: 600 |train loss:0.0973 |test accuracy:0.9685 Epoch: 0 |Step: 700 |train loss:0.0421 |test accuracy:0.9725 Epoch: 0 |Step: 800 |train loss:0.0654 |test accuracy:0.9710 Epoch: 0 |Step: 900 |train loss:0.1333 |test accuracy:0.9740 Epoch: 0 |Step: 1000 |train loss:0.0289 |test accuracy:0.9720 Epoch: 0 |Step: 1100 |train loss:0.0429 |test accuracy:0.9770 [7 2 1 0 4 1 4 9 5 9] prediction number [7 2 1 0 4 1 4 9 5 9] real number '''
三、分析解讀
通過利用torchvision.datasets可以快速獲取可以直接置于DataLoader中的dataset格式的數據,通過train參數控制是獲取訓練數據集還是測試數據集,也可以在獲取的時候便直接轉換成訓練所需的數據格式。
卷積神經網絡的搭建通過定義一個CNN類來實現,卷積層conv1,conv2及out層以類屬性的形式定義,各層之間的銜接信息在forward中定義,定義的時候要留意各層的神經元數量。
CNN的網絡結構如下:
CNN ( (conv1): Sequential ( (0): Conv2d(1, 16,kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) (1): ReLU () (2): MaxPool2d (size=(2,2), stride=(2, 2), dilation=(1, 1)) ) (conv2): Sequential ( (0): Conv2d(16, 32,kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) (1): ReLU () (2): MaxPool2d (size=(2,2), stride=(2, 2), dilation=(1, 1)) ) (out): Linear (1568 ->10) )
經過實驗可見,在EPOCH=1的訓練結果中,測試集準確率可達到97.7%。
以上是“PyTorch上如何實現卷積神經網絡CNN”這篇文章的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注創新互聯成都網站設計公司行業資訊頻道!
另外有需要云服務器可以了解下創新互聯scvps.cn,海內外云服務器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務器、裸金屬服務器、高防服務器、香港服務器、美國服務器、虛擬主機、免備案服務器”等云主機租用服務以及企業上云的綜合解決方案,具有“安全穩定、簡單易用、服務可用性高、性價比高”等特點與優勢,專為企業上云打造定制,能夠滿足用戶豐富、多元化的應用場景需求。
本文名稱:PyTorch上如何實現卷積神經網絡CNN-創新互聯
標題鏈接:http://vcdvsql.cn/article8/ccchip.html
成都網站建設公司_創新互聯,為您提供ChatGPT、關鍵詞優化、網站內鏈、虛擬主機、外貿建站、軟件開發
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯