bl双性强迫侵犯h_国产在线观看人成激情视频_蜜芽188_被诱拐的少孩全彩啪啪漫画

python如何批量統(tǒng)計(jì)xml中各類目標(biāo)的數(shù)量-創(chuàng)新互聯(lián)

這篇文章給大家分享的是有關(guān)python如何批量統(tǒng)計(jì)xml中各類目標(biāo)的數(shù)量的內(nèi)容。小編覺(jué)得挺實(shí)用的,因此分享給大家做個(gè)參考,一起跟隨小編過(guò)來(lái)看看吧。

成都創(chuàng)新互聯(lián)公司專注于普蘭店企業(yè)網(wǎng)站建設(shè),響應(yīng)式網(wǎng)站設(shè)計(jì),電子商務(wù)商城網(wǎng)站建設(shè)。普蘭店網(wǎng)站建設(shè)公司,為普蘭店等地區(qū)提供建站服務(wù)。全流程按需開發(fā)網(wǎng)站,專業(yè)設(shè)計(jì),全程項(xiàng)目跟蹤,成都創(chuàng)新互聯(lián)公司專業(yè)和態(tài)度為您提供的服務(wù)

代碼如下:

# -*- coding:utf-8 -*-
import os
import xml.etree.ElementTree as ET
import numpy as np
np.set_printoptions(suppress=True, threshold=np.nan)
import matplotlib
from PIL import Image
 
def parse_obj(xml_path, filename):
 tree=ET.parse(xml_path+filename)
 objects=[]
 for obj in tree.findall('object'):
 obj_struct={}
 obj_struct['name']=obj.find('name').text
 objects.append(obj_struct)
 return objects
 
 
def read_image(image_path, filename):
 im=Image.open(image_path+filename)
 W=im.size[0]
 H=im.size[1]
 area=W*H
 im_info=[W,H,area]
 return im_info
 
 
if __name__ == '__main__':
 xml_path='C:/Users/nansbas/Desktop/hebin/03/'
 filenamess=os.listdir(xml_path)
 filenames=[]
 for name in filenamess:
 name=name.replace('.xml','')
 filenames.append(name)
 recs={}
 obs_shape={}
 classnames=[]
 num_objs={}
 obj_avg={}
 for i,name in enumerate(filenames):
 recs[name]=parse_obj(xml_path, name+ '.xml' )
 for name in filenames:
 for object in recs[name]:
 if object['name'] not in num_objs.keys():
  num_objs[object['name']]=1
 else:
  num_objs[object['name']]+=1
 if object['name'] not in classnames:
  classnames.append(object['name'])
 for name in classnames:
 print('{}:{}個(gè)'.format(name,num_objs[name]))
 print('信息統(tǒng)計(jì)算完畢。')

python如何批量統(tǒng)計(jì)xml中各類目標(biāo)的數(shù)量

補(bǔ)充知識(shí):Python對(duì)目標(biāo)檢測(cè)數(shù)據(jù)集xml文件操作(統(tǒng)計(jì)目標(biāo)種類、數(shù)量、面積、比例等&修改目標(biāo)名字)

1. 根據(jù)xml文件統(tǒng)計(jì)目標(biāo)種類以及數(shù)量

# -*- coding:utf-8 -*-
#根據(jù)xml文件統(tǒng)計(jì)目標(biāo)種類以及數(shù)量
import os
import xml.etree.ElementTree as ET
import numpy as np
np.set_printoptions(suppress=True, threshold=np.nan)
import matplotlib
from PIL import Image
 
def parse_obj(xml_path, filename):
 tree=ET.parse(xml_path+filename)
 objects=[]
 for obj in tree.findall('object'):
 obj_struct={}
 obj_struct['name']=obj.find('name').text
 objects.append(obj_struct)
 return objects
 
 
def read_image(image_path, filename):
 im=Image.open(image_path+filename)
 W=im.size[0]
 H=im.size[1]
 area=W*H
 im_info=[W,H,area]
 return im_info
 
 
if __name__ == '__main__':
 xml_path='/home/dlut/網(wǎng)絡(luò)/make_database/數(shù)據(jù)集——合集/VOCdevkit/VOC2018/Annotations/'
 filenamess=os.listdir(xml_path)
 filenames=[]
 for name in filenamess:
 name=name.replace('.xml','')
 filenames.append(name)
 recs={}
 obs_shape={}
 classnames=[]
 num_objs={}
 obj_avg={}
 for i,name in enumerate(filenames):
 recs[name]=parse_obj(xml_path, name+ '.xml' )
 for name in filenames:
 for object in recs[name]:
  if object['name'] not in num_objs.keys():
   num_objs[object['name']]=1
  else:
   num_objs[object['name']]+=1
  if object['name'] not in classnames:
   classnames.append(object['name'])
 for name in classnames:
 print('{}:{}個(gè)'.format(name,num_objs[name]))
 print('信息統(tǒng)計(jì)算完畢。')

python如何批量統(tǒng)計(jì)xml中各類目標(biāo)的數(shù)量

2.根據(jù)xml文件統(tǒng)計(jì)目標(biāo)的平均長(zhǎng)度、寬度、面積以及每一個(gè)目標(biāo)在原圖中的占比

# -*- coding:utf-8 -*-
#統(tǒng)計(jì)
# 計(jì)算每一個(gè)目標(biāo)在原圖中的占比
# 計(jì)算目標(biāo)的平均長(zhǎng)度、
# 計(jì)算平均寬度,
# 計(jì)算平均面積、
# 計(jì)算目標(biāo)平均占比

import os
import xml.etree.ElementTree as ET
import numpy as np

#np.set_printoptions(suppress=True, threshold=np.nan) #10,000,000
np.set_printoptions(suppress=True, threshold=10000000) #10,000,000
import matplotlib
from PIL import Image


def parse_obj(xml_path, filename):
 tree = ET.parse(xml_path + filename)
 objects = []
 for obj in tree.findall('object'):
  obj_struct = {}
  obj_struct['name'] = obj.find('name').text
  bbox = obj.find('bndbox')
  obj_struct['bbox'] = [int(bbox.find('xmin').text),
        int(bbox.find('ymin').text),
        int(bbox.find('xmax').text),
        int(bbox.find('ymax').text)]
  objects.append(obj_struct)
 return objects


def read_image(image_path, filename):
 im = Image.open(image_path + filename)
 W = im.size[0]
 H = im.size[1]
 area = W * H
 im_info = [W, H, area]
 return im_info


if __name__ == '__main__':
 image_path = '/home/dlut/網(wǎng)絡(luò)/make_database/數(shù)據(jù)集——合集/VOCdevkit/VOC2018/JPEGImages/'
 xml_path = '/home/dlut/網(wǎng)絡(luò)/make_database/數(shù)據(jù)集——合集/VOCdevkit/VOC2018/Annotations/'
 filenamess = os.listdir(xml_path)
 filenames = []
 for name in filenamess:
  name = name.replace('.xml', '')
  filenames.append(name)
 print(filenames)
 recs = {}
 ims_info = {}
 obs_shape = {}
 classnames = []
 num_objs={}
 obj_avg = {}
 for i, name in enumerate(filenames):
  print('正在處理 {}.xml '.format(name))
  recs[name] = parse_obj(xml_path, name + '.xml')
  print('正在處理 {}.jpg '.format(name))
  ims_info[name] = read_image(image_path, name + '.jpg')
 print('所有信息收集完畢。')
 print('正在處理信息......')
 for name in filenames:
  im_w = ims_info[name][0]
  im_h = ims_info[name][1]
  im_area = ims_info[name][2]
  for object in recs[name]:
   if object['name'] not in num_objs.keys():
    num_objs[object['name']] = 1
   else:
    num_objs[object['name']] += 1
   #num_objs += 1
   ob_w = object['bbox'][2] - object['bbox'][0]
   ob_h = object['bbox'][3] - object['bbox'][1]
   ob_area = ob_w * ob_h
   w_rate = ob_w / im_w
   h_rate = ob_h / im_h
   area_rate = ob_area / im_area
   if not object['name'] in obs_shape.keys():
    obs_shape[object['name']] = ([[ob_w,
            ob_h,
            ob_area,
            w_rate,
            h_rate,
            area_rate]])
   else:
    obs_shape[object['name']].append([ob_w,
             ob_h,
             ob_area,
             w_rate,
             h_rate,
             area_rate])
  if object['name'] not in classnames:
   classnames.append(object['name']) # 求平均

 for name in classnames:
  obj_avg[name] = (np.array(obs_shape[name]).sum(axis=0)) / num_objs[name]
  print('{}的情況如下:*******\n'.format(name))
  print(' 目標(biāo)平均W={}'.format(obj_avg[name][0]))
  print(' 目標(biāo)平均H={}'.format(obj_avg[name][1]))
  print(' 目標(biāo)平均area={}'.format(obj_avg[name][2]))
  print(' 目標(biāo)平均與原圖的W比例={}'.format(obj_avg[name][3]))
  print(' 目標(biāo)平均與原圖的H比例={}'.format(obj_avg[name][4]))
  print(' 目標(biāo)平均原圖面積占比={}\n'.format(obj_avg[name][5]))
 print('信息統(tǒng)計(jì)計(jì)算完畢。')

python如何批量統(tǒng)計(jì)xml中各類目標(biāo)的數(shù)量

3.修改xml文件中某個(gè)目標(biāo)的名字為另一個(gè)名字

#修改xml文件中的目標(biāo)的名字,
import os, sys
import glob
from xml.etree import ElementTree as ET

# 批量讀取Annotations下的xml文件
# per=ET.parse(r'C:\Users\rockhuang\Desktop\Annotations\000003.xml')
xml_dir = r'/home/dlut/網(wǎng)絡(luò)/make_database/數(shù)據(jù)集——合集/VOCdevkit/VOC2018/Annotations'
xml_list = glob.glob(xml_dir + '/*.xml')
for xml in xml_list:
 print(xml)
 per = ET.parse(xml)
 p = per.findall('/object')

 for oneper in p: # 找出person節(jié)點(diǎn)
  child = oneper.getchildren()[0] # 找出person節(jié)點(diǎn)的子節(jié)點(diǎn)
  if child.text == 'PinNormal': #需要修改的名字
   child.text = 'normal bolt' #修改成什么名字
  if child.text == 'PinDefect': #需要修改的名字
   child.text = 'defect bolt-1' #修改成什么名字

 per.write(xml)
 print(child.tag, ':', child.text)

python如何批量統(tǒng)計(jì)xml中各類目標(biāo)的數(shù)量

感謝各位的閱讀!關(guān)于“python如何批量統(tǒng)計(jì)xml中各類目標(biāo)的數(shù)量”這篇文章就分享到這里了,希望以上內(nèi)容可以對(duì)大家有一定的幫助,讓大家可以學(xué)到更多知識(shí),如果覺(jué)得文章不錯(cuò),可以把它分享出去讓更多的人看到吧!

當(dāng)前文章:python如何批量統(tǒng)計(jì)xml中各類目標(biāo)的數(shù)量-創(chuàng)新互聯(lián)
文章起源:http://vcdvsql.cn/article8/jidip.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)頁(yè)設(shè)計(jì)公司網(wǎng)站排名手機(jī)網(wǎng)站建設(shè)面包屑導(dǎo)航軟件開發(fā)營(yíng)銷型網(wǎng)站建設(shè)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)

網(wǎng)站優(yōu)化排名