這篇文章給大家分享的是有關(guān)python如何批量統(tǒng)計(jì)xml中各類目標(biāo)的數(shù)量的內(nèi)容。小編覺(jué)得挺實(shí)用的,因此分享給大家做個(gè)參考,一起跟隨小編過(guò)來(lái)看看吧。
代碼如下:
# -*- coding:utf-8 -*- import os import xml.etree.ElementTree as ET import numpy as np np.set_printoptions(suppress=True, threshold=np.nan) import matplotlib from PIL import Image def parse_obj(xml_path, filename): tree=ET.parse(xml_path+filename) objects=[] for obj in tree.findall('object'): obj_struct={} obj_struct['name']=obj.find('name').text objects.append(obj_struct) return objects def read_image(image_path, filename): im=Image.open(image_path+filename) W=im.size[0] H=im.size[1] area=W*H im_info=[W,H,area] return im_info if __name__ == '__main__': xml_path='C:/Users/nansbas/Desktop/hebin/03/' filenamess=os.listdir(xml_path) filenames=[] for name in filenamess: name=name.replace('.xml','') filenames.append(name) recs={} obs_shape={} classnames=[] num_objs={} obj_avg={} for i,name in enumerate(filenames): recs[name]=parse_obj(xml_path, name+ '.xml' ) for name in filenames: for object in recs[name]: if object['name'] not in num_objs.keys(): num_objs[object['name']]=1 else: num_objs[object['name']]+=1 if object['name'] not in classnames: classnames.append(object['name']) for name in classnames: print('{}:{}個(gè)'.format(name,num_objs[name])) print('信息統(tǒng)計(jì)算完畢。')
補(bǔ)充知識(shí):Python對(duì)目標(biāo)檢測(cè)數(shù)據(jù)集xml文件操作(統(tǒng)計(jì)目標(biāo)種類、數(shù)量、面積、比例等&修改目標(biāo)名字)
1. 根據(jù)xml文件統(tǒng)計(jì)目標(biāo)種類以及數(shù)量
# -*- coding:utf-8 -*- #根據(jù)xml文件統(tǒng)計(jì)目標(biāo)種類以及數(shù)量 import os import xml.etree.ElementTree as ET import numpy as np np.set_printoptions(suppress=True, threshold=np.nan) import matplotlib from PIL import Image def parse_obj(xml_path, filename): tree=ET.parse(xml_path+filename) objects=[] for obj in tree.findall('object'): obj_struct={} obj_struct['name']=obj.find('name').text objects.append(obj_struct) return objects def read_image(image_path, filename): im=Image.open(image_path+filename) W=im.size[0] H=im.size[1] area=W*H im_info=[W,H,area] return im_info if __name__ == '__main__': xml_path='/home/dlut/網(wǎng)絡(luò)/make_database/數(shù)據(jù)集——合集/VOCdevkit/VOC2018/Annotations/' filenamess=os.listdir(xml_path) filenames=[] for name in filenamess: name=name.replace('.xml','') filenames.append(name) recs={} obs_shape={} classnames=[] num_objs={} obj_avg={} for i,name in enumerate(filenames): recs[name]=parse_obj(xml_path, name+ '.xml' ) for name in filenames: for object in recs[name]: if object['name'] not in num_objs.keys(): num_objs[object['name']]=1 else: num_objs[object['name']]+=1 if object['name'] not in classnames: classnames.append(object['name']) for name in classnames: print('{}:{}個(gè)'.format(name,num_objs[name])) print('信息統(tǒng)計(jì)算完畢。')
2.根據(jù)xml文件統(tǒng)計(jì)目標(biāo)的平均長(zhǎng)度、寬度、面積以及每一個(gè)目標(biāo)在原圖中的占比
# -*- coding:utf-8 -*- #統(tǒng)計(jì) # 計(jì)算每一個(gè)目標(biāo)在原圖中的占比 # 計(jì)算目標(biāo)的平均長(zhǎng)度、 # 計(jì)算平均寬度, # 計(jì)算平均面積、 # 計(jì)算目標(biāo)平均占比 import os import xml.etree.ElementTree as ET import numpy as np #np.set_printoptions(suppress=True, threshold=np.nan) #10,000,000 np.set_printoptions(suppress=True, threshold=10000000) #10,000,000 import matplotlib from PIL import Image def parse_obj(xml_path, filename): tree = ET.parse(xml_path + filename) objects = [] for obj in tree.findall('object'): obj_struct = {} obj_struct['name'] = obj.find('name').text bbox = obj.find('bndbox') obj_struct['bbox'] = [int(bbox.find('xmin').text), int(bbox.find('ymin').text), int(bbox.find('xmax').text), int(bbox.find('ymax').text)] objects.append(obj_struct) return objects def read_image(image_path, filename): im = Image.open(image_path + filename) W = im.size[0] H = im.size[1] area = W * H im_info = [W, H, area] return im_info if __name__ == '__main__': image_path = '/home/dlut/網(wǎng)絡(luò)/make_database/數(shù)據(jù)集——合集/VOCdevkit/VOC2018/JPEGImages/' xml_path = '/home/dlut/網(wǎng)絡(luò)/make_database/數(shù)據(jù)集——合集/VOCdevkit/VOC2018/Annotations/' filenamess = os.listdir(xml_path) filenames = [] for name in filenamess: name = name.replace('.xml', '') filenames.append(name) print(filenames) recs = {} ims_info = {} obs_shape = {} classnames = [] num_objs={} obj_avg = {} for i, name in enumerate(filenames): print('正在處理 {}.xml '.format(name)) recs[name] = parse_obj(xml_path, name + '.xml') print('正在處理 {}.jpg '.format(name)) ims_info[name] = read_image(image_path, name + '.jpg') print('所有信息收集完畢。') print('正在處理信息......') for name in filenames: im_w = ims_info[name][0] im_h = ims_info[name][1] im_area = ims_info[name][2] for object in recs[name]: if object['name'] not in num_objs.keys(): num_objs[object['name']] = 1 else: num_objs[object['name']] += 1 #num_objs += 1 ob_w = object['bbox'][2] - object['bbox'][0] ob_h = object['bbox'][3] - object['bbox'][1] ob_area = ob_w * ob_h w_rate = ob_w / im_w h_rate = ob_h / im_h area_rate = ob_area / im_area if not object['name'] in obs_shape.keys(): obs_shape[object['name']] = ([[ob_w, ob_h, ob_area, w_rate, h_rate, area_rate]]) else: obs_shape[object['name']].append([ob_w, ob_h, ob_area, w_rate, h_rate, area_rate]) if object['name'] not in classnames: classnames.append(object['name']) # 求平均 for name in classnames: obj_avg[name] = (np.array(obs_shape[name]).sum(axis=0)) / num_objs[name] print('{}的情況如下:*******\n'.format(name)) print(' 目標(biāo)平均W={}'.format(obj_avg[name][0])) print(' 目標(biāo)平均H={}'.format(obj_avg[name][1])) print(' 目標(biāo)平均area={}'.format(obj_avg[name][2])) print(' 目標(biāo)平均與原圖的W比例={}'.format(obj_avg[name][3])) print(' 目標(biāo)平均與原圖的H比例={}'.format(obj_avg[name][4])) print(' 目標(biāo)平均原圖面積占比={}\n'.format(obj_avg[name][5])) print('信息統(tǒng)計(jì)計(jì)算完畢。')
3.修改xml文件中某個(gè)目標(biāo)的名字為另一個(gè)名字
#修改xml文件中的目標(biāo)的名字, import os, sys import glob from xml.etree import ElementTree as ET # 批量讀取Annotations下的xml文件 # per=ET.parse(r'C:\Users\rockhuang\Desktop\Annotations\000003.xml') xml_dir = r'/home/dlut/網(wǎng)絡(luò)/make_database/數(shù)據(jù)集——合集/VOCdevkit/VOC2018/Annotations' xml_list = glob.glob(xml_dir + '/*.xml') for xml in xml_list: print(xml) per = ET.parse(xml) p = per.findall('/object') for oneper in p: # 找出person節(jié)點(diǎn) child = oneper.getchildren()[0] # 找出person節(jié)點(diǎn)的子節(jié)點(diǎn) if child.text == 'PinNormal': #需要修改的名字 child.text = 'normal bolt' #修改成什么名字 if child.text == 'PinDefect': #需要修改的名字 child.text = 'defect bolt-1' #修改成什么名字 per.write(xml) print(child.tag, ':', child.text)
感謝各位的閱讀!關(guān)于“python如何批量統(tǒng)計(jì)xml中各類目標(biāo)的數(shù)量”這篇文章就分享到這里了,希望以上內(nèi)容可以對(duì)大家有一定的幫助,讓大家可以學(xué)到更多知識(shí),如果覺(jué)得文章不錯(cuò),可以把它分享出去讓更多的人看到吧!
當(dāng)前文章:python如何批量統(tǒng)計(jì)xml中各類目標(biāo)的數(shù)量-創(chuàng)新互聯(lián)
文章起源:http://vcdvsql.cn/article8/jidip.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)頁(yè)設(shè)計(jì)公司、網(wǎng)站排名、手機(jī)網(wǎng)站建設(shè)、面包屑導(dǎo)航、軟件開發(fā)、營(yíng)銷型網(wǎng)站建設(shè)
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內(nèi)容