bl双性强迫侵犯h_国产在线观看人成激情视频_蜜芽188_被诱拐的少孩全彩啪啪漫画

學習后端必須掌握的算法:一致性Hash

2021-02-09    分類: 網(wǎng)站建設

原始問題:假設我們需要對一堆圖片做緩存,緩存的圖片放在了2臺服務器上,當?shù)絹硪粋€請求,應該如何知道請求的圖片在哪臺上面呢?

暴力遍歷就不要去想了,否則緩存就沒有意義了。一個自然的想法就是根據(jù)圖片的名字做一個映射(Hash),將圖片名字映射到0,1兩個數(shù)字上面,例如有這樣的映射函數(shù):

f(圖片名稱) = md5(圖片名稱) % 2

md5是一個典型的哈希函數(shù),會產(chǎn)生128bit的值,模2后只可能是0或1,那么我們就根據(jù)這個值把圖片存入0、1兩臺服務器,當請求過來,根據(jù)圖片名稱計算出值,就可以知道圖片緩存放在第幾號服務器了:


但假設現(xiàn)在我們圖片太多了,需要再增加一臺服務器分擔壓力,哈希函數(shù)必須更改成0、1、2映射,我們改為:

f(圖片名稱) = md5(圖片名稱) % 3

理論上講,會有(N-1)/N的緩存會失效,其中N是服務器的數(shù)量,例如上述圖片緩存,除了0圖片、1圖片,其余圖片的存放位置都變了,失效的緩存有 2/3 * 6 = 4張圖片:


減少圖片服務器數(shù)量造成的后果亦是如此——在同一個時刻將會有大量緩存同時失效,稱為“緩存雪崩”。失效了就會直接去后端服務器取,大量的請求直接透過緩存打到后端服務器,后端服務器極有可能承受不住壓力而接連崩潰,最終造成整個系統(tǒng)癱瘓。

所以出現(xiàn)進階問題:當緩存服務器數(shù)量發(fā)生變化時,如何盡可能避免大量緩存同時失效?

答案就是一致性Hash。

1、放置服務器

我們將服務器像圖片一樣也進行哈希,服務器的“圖片名稱”一般就使用固定IP地址,Hash取模也不再是服務器數(shù)量,而是2^32,Hash的方法也不局限于md5,用一個抽象的函數(shù)表示:

f(服務器IP地址) = Hash(服務器IP地址) % 2^32

于是服務器被放置到了0~2^32-1某個數(shù)字對應的位置上去:


這里0~2^32-1是順時針放置還是逆時針放置,網(wǎng)上的說法不一,雖然不影響算法,但統(tǒng)一會更好。我在原論文《Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web》中沒有找到相應的描述,于是采用了網(wǎng)上的主流選擇:順時針放置0~2^32-1。

為什么是2^32-1呢?因為第一次提出一致性Hash的論文是1997年發(fā)表的,那時候32位機器還是主流,2^32-1是大的Integer。而現(xiàn)在64位早就普及了,完全可以將這個值擴大到2^64-1。

2、放置數(shù)據(jù)

我們將數(shù)據(jù)也按照相同的方式放到0~2^32-1的某個數(shù)字上去:

f(圖片名稱) = Hash(圖片名稱) % 2^32


3、把數(shù)據(jù)放到服務器上

對于每個數(shù)據(jù),從映射的位置開始,順時針行走,放置到碰到的第一個服務器上。例如3、230將會放到0號圖片服務器,232將會放到1號圖片服務器,4175556547將會放到2號圖片服務器:


這樣一致性Hash就完成了。查找數(shù)據(jù)也是先映射、再順時針行走找到第一臺服務器。


而對于其他圖片來說,緩存位置并沒有發(fā)生變化,影響的數(shù)據(jù)量從(N-1)/ N 降為了 M,其中M是0號圖片服務器到1號圖片服務器之間的圖片數(shù)量。需要重新獲取的緩存數(shù)據(jù)量降低了,雪崩問題自然也就能夠得到緩解。


0、1、2三臺服務器并沒有均勻分布在環(huán)上,大量的圖片數(shù)據(jù)都被放到了0號服務器上,而很少數(shù)據(jù)放到1、2號等其他圖片服務器上,這種情況稱之為Hash環(huán)偏斜。如果存放的是緩存則0號服務器崩潰就會引起緩存雪崩,如果存放的是數(shù)據(jù)則0號服務器就可能單點故障。

很自然可以想到,增加多臺服務器就好了嘛。我們在Hash環(huán)上生成0、1、2三臺服務器的虛擬節(jié)點:


具體的做法是,在服務器IP后面增加編號,每一臺服務器產(chǎn)生多個Hash值,就能放置在0~2^32-1的多個位置上了。這樣一來,順時針行走能找到不同的服務器概率將會大大提高,避免了偏斜問題。虛擬的服務器節(jié)點數(shù)越多,偏斜出現(xiàn)的概率就越低。通常都需要設置32或以上的虛擬節(jié)點數(shù)目,我見過甚至有設置500的。

分享名稱:學習后端必須掌握的算法:一致性Hash
網(wǎng)站地址:http://vcdvsql.cn/news/100085.html

成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站排名網(wǎng)站設計公司品牌網(wǎng)站建設網(wǎng)站策劃企業(yè)建站服務器托管

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

網(wǎng)站托管運營