用turtle畫完圖后使用如下代碼保存
創新互聯網站建設提供從項目策劃、軟件開發,軟件安全維護、網站優化(SEO)、網站分析、效果評估等整套的建站服務,主營業務為成都網站制作、成都做網站,app軟件定制開發以傳統方式定制建設網站,并提供域名空間備案等一條龍服務,秉承以專業、用心的態度為用戶提供真誠的服務。創新互聯深信只要達到每一位用戶的要求,就會得到認可,從而選擇與我們長期合作。這樣,我們也可以走得更遠!
ts = turtle.getscreen()
ts.getcanvas().postscript(file="pic.eps")
然后可以再用ps等軟件來轉換為常用的jpg等格式
聚類或聚類分析是無監督學習問題。它通常被用作數據分析技術,用于發現數據中的有趣模式,例如基于其行為的客戶群。有許多聚類算法可供選擇,對于所有情況,沒有單一的最佳聚類算法。相反,最好探索一系列聚類算法以及每種算法的不同配置。在本教程中,你將發現如何在 python 中安裝和使用頂級聚類算法。完成本教程后,你將知道:
聚類分析,即聚類,是一項無監督的機器學習任務。它包括自動發現數據中的自然分組。與監督學習(類似預測建模)不同,聚類算法只解釋輸入數據,并在特征空間中找到自然組或群集。
群集通常是特征空間中的密度區域,其中來自域的示例(觀測或數據行)比其他群集更接近群集。群集可以具有作為樣本或點特征空間的中心(質心),并且可以具有邊界或范圍。
聚類可以作為數據分析活動提供幫助,以便了解更多關于問題域的信息,即所謂的模式發現或知識發現。例如:
聚類還可用作特征工程的類型,其中現有的和新的示例可被映射并標記為屬于數據中所標識的群集之一。雖然確實存在許多特定于群集的定量措施,但是對所識別的群集的評估是主觀的,并且可能需要領域專家。通常,聚類算法在人工合成數據集上與預先定義的群集進行學術比較,預計算法會發現這些群集。
有許多類型的聚類算法。許多算法在特征空間中的示例之間使用相似度或距離度量,以發現密集的觀測區域。因此,在使用聚類算法之前,擴展數據通常是良好的實踐。
一些聚類算法要求您指定或猜測數據中要發現的群集的數量,而另一些算法要求指定觀測之間的最小距離,其中示例可以被視為“關閉”或“連接”。因此,聚類分析是一個迭代過程,在該過程中,對所識別的群集的主觀評估被反饋回算法配置的改變中,直到達到期望的或適當的結果。scikit-learn 庫提供了一套不同的聚類算法供選擇。下面列出了10種比較流行的算法:
每個算法都提供了一種不同的方法來應對數據中發現自然組的挑戰。沒有最好的聚類算法,也沒有簡單的方法來找到最好的算法為您的數據沒有使用控制實驗。在本教程中,我們將回顧如何使用來自 scikit-learn 庫的這10個流行的聚類算法中的每一個。這些示例將為您復制粘貼示例并在自己的數據上測試方法提供基礎。我們不會深入研究算法如何工作的理論,也不會直接比較它們。讓我們深入研究一下。
在本節中,我們將回顧如何在 scikit-learn 中使用10個流行的聚類算法。這包括一個擬合模型的例子和可視化結果的例子。這些示例用于將粘貼復制到您自己的項目中,并將方法應用于您自己的數據。
1.庫安裝
首先,讓我們安裝庫。不要跳過此步驟,因為你需要確保安裝了最新版本。你可以使用 pip Python 安裝程序安裝 scikit-learn 存儲庫,如下所示:
接下來,讓我們確認已經安裝了庫,并且您正在使用一個現代版本。運行以下腳本以輸出庫版本號。
運行該示例時,您應該看到以下版本號或更高版本。
2.聚類數據集
我們將使用 make _ classification ()函數創建一個測試二分類數據集。數據集將有1000個示例,每個類有兩個輸入要素和一個群集。這些群集在兩個維度上是可見的,因此我們可以用散點圖繪制數據,并通過指定的群集對圖中的點進行顏色繪制。這將有助于了解,至少在測試問題上,群集的識別能力如何。該測試問題中的群集基于多變量高斯,并非所有聚類算法都能有效地識別這些類型的群集。因此,本教程中的結果不應用作比較一般方法的基礎。下面列出了創建和匯總合成聚類數據集的示例。
運行該示例將創建合成的聚類數據集,然后創建輸入數據的散點圖,其中點由類標簽(理想化的群集)著色。我們可以清楚地看到兩個不同的數據組在兩個維度,并希望一個自動的聚類算法可以檢測這些分組。
已知聚類著色點的合成聚類數據集的散點圖接下來,我們可以開始查看應用于此數據集的聚類算法的示例。我已經做了一些最小的嘗試來調整每個方法到數據集。3.親和力傳播親和力傳播包括找到一組最能概括數據的范例。
它是通過 AffinityPropagation 類實現的,要調整的主要配置是將“ 阻尼 ”設置為0.5到1,甚至可能是“首選項”。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,并預測數據集中每個示例的群集。然后創建一個散點圖,并由其指定的群集著色。在這種情況下,我無法取得良好的結果。
數據集的散點圖,具有使用親和力傳播識別的聚類
4.聚合聚類
聚合聚類涉及合并示例,直到達到所需的群集數量為止。它是層次聚類方法的更廣泛類的一部分,通過 AgglomerationClustering 類實現的,主要配置是“ n _ clusters ”集,這是對數據中的群集數量的估計,例如2。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,并預測數據集中每個示例的群集。然后創建一個散點圖,并由其指定的群集著色。在這種情況下,可以找到一個合理的分組。
使用聚集聚類識別出具有聚類的數據集的散點圖
5.BIRCHBIRCH
聚類( BIRCH 是平衡迭代減少的縮寫,聚類使用層次結構)包括構造一個樹狀結構,從中提取聚類質心。
它是通過 Birch 類實現的,主要配置是“ threshold ”和“ n _ clusters ”超參數,后者提供了群集數量的估計。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,并預測數據集中每個示例的群集。然后創建一個散點圖,并由其指定的群集著色。在這種情況下,可以找到一個很好的分組。
使用BIRCH聚類確定具有聚類的數據集的散點圖
6.DBSCANDBSCAN
聚類(其中 DBSCAN 是基于密度的空間聚類的噪聲應用程序)涉及在域中尋找高密度區域,并將其周圍的特征空間區域擴展為群集。
它是通過 DBSCAN 類實現的,主要配置是“ eps ”和“ min _ samples ”超參數。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,并預測數據集中每個示例的群集。然后創建一個散點圖,并由其指定的群集著色。在這種情況下,盡管需要更多的調整,但是找到了合理的分組。
使用DBSCAN集群識別出具有集群的數據集的散點圖
7.K均值
K-均值聚類可以是最常見的聚類算法,并涉及向群集分配示例,以盡量減少每個群集內的方差。
它是通過 K-均值類實現的,要優化的主要配置是“ n _ clusters ”超參數設置為數據中估計的群集數量。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,并預測數據集中每個示例的群集。然后創建一個散點圖,并由其指定的群集著色。在這種情況下,可以找到一個合理的分組,盡管每個維度中的不等等方差使得該方法不太適合該數據集。
使用K均值聚類識別出具有聚類的數據集的散點圖
8.Mini-Batch
K-均值Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的樣本而不是整個數據集對群集質心進行更新,這可以使大數據集的更新速度更快,并且可能對統計噪聲更健壯。
它是通過 MiniBatchKMeans 類實現的,要優化的主配置是“ n _ clusters ”超參數,設置為數據中估計的群集數量。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,并預測數據集中每個示例的群集。然后創建一個散點圖,并由其指定的群集著色。在這種情況下,會找到與標準 K-均值算法相當的結果。
帶有最小批次K均值聚類的聚類數據集的散點圖
9.均值漂移聚類
均值漂移聚類涉及到根據特征空間中的實例密度來尋找和調整質心。
它是通過 MeanShift 類實現的,主要配置是“帶寬”超參數。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,并預測數據集中每個示例的群集。然后創建一個散點圖,并由其指定的群集著色。在這種情況下,可以在數據中找到一組合理的群集。
具有均值漂移聚類的聚類數據集散點圖
10.OPTICSOPTICS
聚類( OPTICS 短于訂購點數以標識聚類結構)是上述 DBSCAN 的修改版本。
它是通過 OPTICS 類實現的,主要配置是“ eps ”和“ min _ samples ”超參數。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,并預測數據集中每個示例的群集。然后創建一個散點圖,并由其指定的群集著色。在這種情況下,我無法在此數據集上獲得合理的結果。
使用OPTICS聚類確定具有聚類的數據集的散點圖
11.光譜聚類
光譜聚類是一類通用的聚類方法,取自線性線性代數。
它是通過 Spectral 聚類類實現的,而主要的 Spectral 聚類是一個由聚類方法組成的通用類,取自線性線性代數。要優化的是“ n _ clusters ”超參數,用于指定數據中的估計群集數量。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,并預測數據集中每個示例的群集。然后創建一個散點圖,并由其指定的群集著色。在這種情況下,找到了合理的集群。
使用光譜聚類聚類識別出具有聚類的數據集的散點圖
12.高斯混合模型
高斯混合模型總結了一個多變量概率密度函數,顧名思義就是混合了高斯概率分布。它是通過 Gaussian Mixture 類實現的,要優化的主要配置是“ n _ clusters ”超參數,用于指定數據中估計的群集數量。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,并預測數據集中每個示例的群集。然后創建一個散點圖,并由其指定的群集著色。在這種情況下,我們可以看到群集被完美地識別。這并不奇怪,因為數據集是作為 Gaussian 的混合生成的。
使用高斯混合聚類識別出具有聚類的數據集的散點圖
在本文中,你發現了如何在 python 中安裝和使用頂級聚類算法。具體來說,你學到了:
保存的方式有兩種。
1、使用matplotlib畫圖保存方法:首先,import頭文件如下:import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.pyplot import plot,savefig畫圖:fig, ax = plt.subplots(figsize=(12, 12)) ax.imshow(im, aspect='equal') #im是要顯示的圖像。保存圖片:savefig("D:/1.jpg")展示圖片:plt.show()2、turtle生成圖片保存代碼示例如下:from Tkinter import * from turtle import * import turtle forward(100) ts = turtle.getscreen() ts.getcanvas().postscript(file="duck.eps") #.eps文件即postscript腳本以上就是python畫圖后如何保存的詳細內容。
分享標題:python+eps函數 pythonspeed函數
鏈接分享:http://vcdvsql.cn/article12/doiejdc.html
成都網站建設公司_創新互聯,為您提供自適應網站、響應式網站、網站設計公司、搜索引擎優化、面包屑導航、網頁設計公司
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯