這篇文章將為大家詳細講解有關大數據中Spark任務和集群啟動流程是什么樣的,文章內容質量較高,因此小編分享給大家做個參考,希望大家閱讀完這篇文章后對相關知識有一定的了解。
網站建設哪家好,找成都創新互聯!專注于網頁設計、網站建設、微信開發、重慶小程序開發、集團企業網站建設等服務項目。為回饋新老客戶創新互聯還提供了常寧免費建站歡迎大家使用!
大數據分享Spark任務和集群啟動流程,Spark集群啟動流程
1.調用start-all.sh腳本,開始啟動Master
2.Master啟動以后,preStart方法調用了一個定時器,定時檢查超時的Worker后刪除
3.啟動腳本會解析slaves配置文件,找到啟動Worker的相應節點.開始啟動Worker
4.Worker服務啟動后開始調用preStart方法開始向所有的Master進行注冊
5.Master接收到Worker發送過來的注冊信息,Master開始保存注冊信息并把自己的URL響應給Worker
6.Worker接收到Master的URL后并更新,開始調用一個定時器,定時的向Master發送心跳信息
任務提交流程
1.Driver端會通過spark-submit腳本啟動SaparkSubmit進程,此時創建了一個非常重要的對象(SparkContext),開始向Master發送消息
2.Master接收到發送過來的信息后開始生成任務信息,并把任務信息放到一個對列里
3.Master把所有有效的Worker過濾出來,按照空閑的資源進行排序
4.Master開始向有效的Worker通知拿取任務信息并啟動相應的Executor
5.Worker啟動Executor并向Driver反向注冊
6.Driver開始把生成的task發送給相應的Executor,Executor開始執行任務
集群啟動流程
1.首先創建Master類
import akka.actor.{Actor, ActorSystem, Props}
import com.typesafe.config.{Config, ConfigFactory}
import scala.collection.mutable
import scala.concurrent.duration._
class Master(val masterHost: String, val masterPort: Int) extends Actor{
// 用來存儲Worker的注冊信息
val idToWorker = new mutable.HashMap[String, WorkerInfo]()
// 用來存儲Worker的信息
val workers = new mutable.HashSet[WorkerInfo]()
// Worker的超時時間間隔
val checkInterval: Long = 15000
// 生命周期方法,在構造器之后,receive方法之前只調用一次
override def preStart(): Unit = {
// 啟動一個定時器,用來定時檢查超時的Worker
import context.dispatcher
context.system.scheduler.schedule(0 millis, checkInterval millis, self, CheckTimeOutWorker)
}
// 在preStart方法之后,不斷的重復調用
override def receive: Receive = {
// Worker -> Master
case RegisterWorker(id, host, port, memory, cores) => {
if (!idToWorker.contains(id)){
val workerInfo = new WorkerInfo(id, host, port, memory, cores)
idToWorker += (id -> workerInfo)
workers += workerInfo
println("a worker registered")
sender ! RegisteredWorker(s"akka.tcp://${Master.MASTER_SYSTEM}" +
s"@${masterHost}:${masterPort}/user/${Master.MASTER_ACTOR}")
}
}
case HeartBeat(workerId) => {
// 通過傳過來的workerId獲取對應的WorkerInfo
val workerInfo: WorkerInfo = idToWorker(workerId)
// 獲取當前時間
val currentTime = System.currentTimeMillis()
// 更新最后一次心跳時間
workerInfo.lastHeartbeatTime = currentTime
}
case CheckTimeOutWorker => {
val currentTime = System.currentTimeMillis()
val toRemove: mutable.HashSet[WorkerInfo] =
workers.filter(w => currentTime - w.lastHeartbeatTime > checkInterval)
// 將超時的Worker從idToWorker和workers中移除
toRemove.foreach(deadWorker => {
idToWorker -= deadWorker.id
workers -= deadWorker
})
println(s"num of workers: ${workers.size}")
}
}
}
object Master{
val MASTER_SYSTEM = "MasterSystem"
val MASTER_ACTOR = "Master"
def main(args: Array[String]): Unit = {
val host = args(0)
val port = args(1).toInt
val configStr =
s"""
|akka.actor.provider = "akka.remote.RemoteActorRefProvider"
|akka.remote.netty.tcp.hostname = "$host"
|akka.remote.netty.tcp.port = "$port"
""".stripMargin
// 配置創建Actor需要的配置信息
val config: Config = ConfigFactory.parseString(configStr)
// 創建ActorSystem
val actorSystem: ActorSystem = ActorSystem(MASTER_SYSTEM, config)
// 用actorSystem實例創建Actor
actorSystem.actorOf(Props(new Master(host, port)), MASTER_ACTOR)
actorSystem.awaitTermination()
}
}
2.創建RemoteMsg特質
trait RemoteMsg extends Serializable{
}
// Master -> self(Master)
case object CheckTimeOutWorker
// Worker -> Master
case class RegisterWorker(id: String, host: String,
port: Int, memory: Int, cores: Int) extends RemoteMsg
// Master -> Worker
case class RegisteredWorker(masterUrl: String) extends RemoteMsg
// Worker -> self
case object SendHeartBeat
// Worker -> Master(HeartBeat)
case class HeartBeat(workerId: String) extends RemoteMsg
3.創建Worker類
import java.util.UUID
import akka.actor.{Actor, ActorRef, ActorSelection, ActorSystem, Props}
import com.typesafe.config.{Config, ConfigFactory}
import scala.concurrent.duration._
class Worker(val host: String, val port: Int, val masterHost: String,
val masterPort: Int, val memory: Int, val cores: Int) extends Actor{
// 生成一個Worker ID
val workerId = UUID.randomUUID().toString
// 用來存儲MasterURL
var masterUrl: String = _
// 心跳時間間隔
val heartBeat_interval: Long = 10000
// master的Actor
var master: ActorSelection = _
override def preStart(){
// 獲取Master的Actor
master = context.actorSelection(s"akka.tcp://${Master.MASTER_SYSTEM}" +
s"@${masterHost}:${masterPort}/user/${Master.MASTER_ACTOR}")
master ! RegisterWorker(workerId, host, port, memory, cores)
}
override def receive: Receive = {
// Worker接收到Master發送過來的注冊成功的信息(masterUrl)
case RegisteredWorker(masterUrl) => {
this.masterUrl = masterUrl
// 啟動一個定時器,定時給Master發送心跳
import context.dispatcher
context.system.scheduler.schedule(0 millis, heartBeat_interval millis, self, SendHeartBeat)
}
case SendHeartBeat => {
// 向Master發送心跳
master ! HeartBeat(workerId)
}
}
}
object Worker{
val WORKER_SYSTEM = "WorkerSystem"
val WORKER_ACTOR = "Worker"
def main(args: Array[String]): Unit = {
val host = args(0)
val port = args(1).toInt
val masterHost = args(2)
val masterPort = args(3).toInt
val memory = args(4).toInt
val cores = args(5).toInt
val configStr =
s"""
|akka.actor.provider = "akka.remote.RemoteActorRefProvider"
|akka.remote.netty.tcp.hostname = "$host"
|akka.remote.netty.tcp.port = "$port"
""".stripMargin
// 配置創建Actor需要的配置信息
val config: Config = ConfigFactory.parseString(configStr)
// 創建ActorSystem
val actorSystem: ActorSystem = ActorSystem(WORKER_SYSTEM, config)
// 用actorSystem實例創建Actor
val worker: ActorRef = actorSystem.actorOf(
Props(new Worker(host, port, masterHost, masterPort, memory, cores)), WORKER_ACTOR)
actorSystem.awaitTermination()
}
}
4.創建初始化類
class WorkerInfo(val id: String, val host: String, val port: Int,
val memory: Int, val cores: Int) {
// 初始化最后一次心跳的時間
var lastHeartbeatTime: Long = _
}
5.本地測試需要傳入參數:
關于大數據中Spark任務和集群啟動流程是什么樣的就分享到這里了,希望以上內容可以對大家有一定的幫助,可以學到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。
新聞名稱:大數據中Spark任務和集群啟動流程是什么樣的
網站URL:http://vcdvsql.cn/article12/gjcogc.html
成都網站建設公司_創新互聯,為您提供搜索引擎優化、全網營銷推廣、微信公眾號、企業網站制作、軟件開發、品牌網站制作
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯