子查詢(xún)優(yōu)化策略
目前創(chuàng)新互聯(lián)已為上千余家的企業(yè)提供了網(wǎng)站建設(shè)、域名、網(wǎng)頁(yè)空間、網(wǎng)站托管運(yùn)營(yíng)、企業(yè)網(wǎng)站設(shè)計(jì)、普寧網(wǎng)站維護(hù)等服務(wù),公司將堅(jiān)持客戶(hù)導(dǎo)向、應(yīng)用為本的策略,正道將秉承"和諧、參與、激情"的文化,與客戶(hù)和合作伙伴齊心協(xié)力一起成長(zhǎng),共同發(fā)展。
對(duì)于不同類(lèi)型的子查詢(xún),優(yōu)化器會(huì)選擇不同的策略。
1. 對(duì)于 IN、=ANY 子查詢(xún),優(yōu)化器有如下策略選擇:
semijoin
Materialization
exists
2. 對(duì)于 NOT IN、ALL 子查詢(xún),優(yōu)化器有如下策略選擇:
Materialization
exists
3. 對(duì)于 derived 派生表,優(yōu)化器有如下策略選擇:
derived_merge,將派生表合并到外部查詢(xún)中(5.7 引入 );
將派生表物化為內(nèi)部臨時(shí)表,再用于外部查詢(xún)。
注意:update 和 delete 語(yǔ)句中子查詢(xún)不能使用 semijoin、materialization 優(yōu)化策略
根據(jù)所描述的問(wèn)題,可嘗試在mms_profitcenter 的FOrderID ,F(xiàn)Suffix列上建立索引,再查詢(xún)?cè)囋嚒?下面提供30種mysql常用優(yōu)化方法供參考:
1.對(duì)查詢(xún)進(jìn)行優(yōu)化,應(yīng)盡量避免全表掃描,首先應(yīng)考慮在 where 及 order by 涉及的列上建立索引。
2.應(yīng)盡量避免在 where 子句中使用!=或操作符,否則將引擎放棄使用索引而進(jìn)行全表掃描。
3.應(yīng)盡量避免在 where 子句中對(duì)字段進(jìn)行 null 值判斷,否則將導(dǎo)致引擎放棄使用索引而進(jìn)行全表掃描,如:
select id from t where num is null
可以在num上設(shè)置默認(rèn)值0,確保表中num列沒(méi)有null值,然后這樣查詢(xún):
select id from t where num=0
4.應(yīng)盡量避免在 where 子句中使用 or 來(lái)連接條件,否則將導(dǎo)致引擎放棄使用索引而進(jìn)行全表掃描,如:
select id from t where num=10 or num=20
可以這樣查詢(xún):
select id from t where num=10
union all
select id from t where num=20
5.下面的查詢(xún)也將導(dǎo)致全表掃描:
select id from t where name like '%abc%'
若要提高效率,可以考慮全文檢索。
6.in 和 not in 也要慎用,否則會(huì)導(dǎo)致全表掃描,如:
select id from t where num in(1,2,3)
對(duì)于連續(xù)的數(shù)值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
7.如果在 where 子句中使用參數(shù),也會(huì)導(dǎo)致全表掃描。因?yàn)镾QL只有在運(yùn)行時(shí)才會(huì)解析局部變量,但優(yōu)化程序不能將訪問(wèn)計(jì)劃的選擇推遲到運(yùn)行時(shí);它必須在編譯時(shí)進(jìn)行選擇。然而,如果在編譯時(shí)建立訪問(wèn)計(jì)劃,變量的值還是未知的,因而無(wú)法作為索引選擇的輸入項(xiàng)。如下面語(yǔ)句將進(jìn)行全表掃描:
select id from t where num=@num
可以改為強(qiáng)制查詢(xún)使用索引:
select id from t with(index(索引名)) where num=@num
8.應(yīng)盡量避免在 where 子句中對(duì)字段進(jìn)行表達(dá)式操作,這將導(dǎo)致引擎放棄使用索引而進(jìn)行全表掃描。如:
select id from t where num/2=100
應(yīng)改為:
select id from t where num=100*2
9.應(yīng)盡量避免在where子句中對(duì)字段進(jìn)行函數(shù)操作,這將導(dǎo)致引擎放棄使用索引而進(jìn)行全表掃描。如:
select id from t where substring(name,1,3)='abc'--name以abc開(kāi)頭的id
select id from t where datediff(day,createdate,'2005-11-30')=0--'2005-11-30'生成的id
應(yīng)改為:
select id from t where name like 'abc%'
select id from t where createdate='2005-11-30' and createdate'2005-12-1'
10.不要在 where 子句中的“=”左邊進(jìn)行函數(shù)、算術(shù)運(yùn)算或其他表達(dá)式運(yùn)算,否則系統(tǒng)將可能無(wú)法正確使用索引。
11.在使用索引字段作為條件時(shí),如果該索引是復(fù)合索引,那么必須使用到該索引中的第一個(gè)字段作為條件時(shí)才能保證系統(tǒng)使用該索引,否則該索引將不會(huì)被使用,并且應(yīng)盡可能的讓字段順序與索引順序相一致。
12.不要寫(xiě)一些沒(méi)有意義的查詢(xún),如需要生成一個(gè)空表結(jié)構(gòu):
select col1,col2 into #t from t where 1=0
這類(lèi)代碼不會(huì)返回任何結(jié)果集,但是會(huì)消耗系統(tǒng)資源的,應(yīng)改成這樣:
create table #t(...)
13.很多時(shí)候用 exists 代替 in 是一個(gè)好的選擇:
select num from a where num in(select num from b)
用下面的語(yǔ)句替換:
select num from a where exists(select 1 from b where num=a.num)
14.并不是所有索引對(duì)查詢(xún)都有效,SQL是根據(jù)表中數(shù)據(jù)來(lái)進(jìn)行查詢(xún)優(yōu)化的,當(dāng)索引列有大量數(shù)據(jù)重復(fù)時(shí),SQL查詢(xún)可能不會(huì)去利用索引,如一表中有字段sex,male、female幾乎各一半,那么即使在sex上建了索引也對(duì)查詢(xún)效率起不了作用。
15.索引并不是越多越好,索引固然可以提高相應(yīng)的 select 的效率,但同時(shí)也降低了 insert 及 update 的效率,因?yàn)?insert 或 update 時(shí)有可能會(huì)重建索引,所以怎樣建索引需要慎重考慮,視具體情況而定。一個(gè)表的索引數(shù)最好不要超過(guò)6個(gè),若太多則應(yīng)考慮一些不常使用到的列上建的索引是否有必要。
16.應(yīng)盡可能的避免更新 clustered 索引數(shù)據(jù)列,因?yàn)?clustered 索引數(shù)據(jù)列的順序就是表記錄的物理存儲(chǔ)順序,一旦該列值改變將導(dǎo)致整個(gè)表記錄的順序的調(diào)整,會(huì)耗費(fèi)相當(dāng)大的資源。若應(yīng)用系統(tǒng)需要頻繁更新 clustered 索引數(shù)據(jù)列,那么需要考慮是否應(yīng)將該索引建為 clustered 索引。
17.盡量使用數(shù)字型字段,若只含數(shù)值信息的字段盡量不要設(shè)計(jì)為字符型,這會(huì)降低查詢(xún)和連接的性能,并會(huì)增加存儲(chǔ)開(kāi)銷(xiāo)。這是因?yàn)橐嬖谔幚聿樵?xún)和連接時(shí)會(huì)逐個(gè)比較字符串中每一個(gè)字符,而對(duì)于數(shù)字型而言只需要比較一次就夠了。
18.盡可能的使用 varchar/nvarchar 代替 char/nchar ,因?yàn)槭紫茸冮L(zhǎng)字段存儲(chǔ)空間小,可以節(jié)省存儲(chǔ)空間,其次對(duì)于查詢(xún)來(lái)說(shuō),在一個(gè)相對(duì)較小的字段內(nèi)搜索效率顯然要高些。
19.任何地方都不要使用 select * from t ,用具體的字段列表代替“*”,不要返回用不到的任何字段。
20.盡量使用表變量來(lái)代替臨時(shí)表。如果表變量包含大量數(shù)據(jù),請(qǐng)注意索引非常有限(只有主鍵索引)。
21.避免頻繁創(chuàng)建和刪除臨時(shí)表,以減少系統(tǒng)表資源的消耗。
22.臨時(shí)表并不是不可使用,適當(dāng)?shù)厥褂盟鼈兛梢允鼓承├谈行В纾?dāng)需要重復(fù)引用大型表或常用表中的某個(gè)數(shù)據(jù)集時(shí)。但是,對(duì)于一次性事件,最好使用導(dǎo)出表。
23.在新建臨時(shí)表時(shí),如果一次性插入數(shù)據(jù)量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果數(shù)據(jù)量不大,為了緩和系統(tǒng)表的資源,應(yīng)先create table,然后insert。
24.如果使用到了臨時(shí)表,在存儲(chǔ)過(guò)程的最后務(wù)必將所有的臨時(shí)表顯式刪除,先 truncate table ,然后 drop table ,這樣可以避免系統(tǒng)表的較長(zhǎng)時(shí)間鎖定。
25.盡量避免使用游標(biāo),因?yàn)橛螛?biāo)的效率較差,如果游標(biāo)操作的數(shù)據(jù)超過(guò)1萬(wàn)行,那么就應(yīng)該考慮改寫(xiě)。
26.使用基于游標(biāo)的方法或臨時(shí)表方法之前,應(yīng)先尋找基于集的解決方案來(lái)解決問(wèn)題,基于集的方法通常更有效。
27.與臨時(shí)表一樣,游標(biāo)并不是不可使用。對(duì)小型數(shù)據(jù)集使用 FAST_FORWARD 游標(biāo)通常要優(yōu)于其他逐行處理方法,尤其是在必須引用幾個(gè)表才能獲得所需的數(shù)據(jù)時(shí)。在結(jié)果集中包括“合計(jì)”的例程通常要比使用游標(biāo)執(zhí)行的速度快。如果開(kāi)發(fā)時(shí)間允許,基于游標(biāo)的方法和基于集的方法都可以嘗試一下,看哪一種方法的效果更好。
28.在所有的存儲(chǔ)過(guò)程和觸發(fā)器的開(kāi)始處設(shè)置 SET NOCOUNT ON ,在結(jié)束時(shí)設(shè)置 SET NOCOUNT OFF 。無(wú)需在執(zhí)行存儲(chǔ)過(guò)程和觸發(fā)器的每個(gè)語(yǔ)句后向客戶(hù)端發(fā)送 DONE_IN_PROC 消息。
29.盡量避免向客戶(hù)端返回大數(shù)據(jù)量,若數(shù)據(jù)量過(guò)大,應(yīng)該考慮相應(yīng)需求是否合理。
30.盡量避免大事務(wù)操作,提高系統(tǒng)并發(fā)能力。
在開(kāi)始演示之前,我們先介紹下兩個(gè)概念。
概念一,數(shù)據(jù)的可選擇性基數(shù),也就是常說(shuō)的cardinality值。
查詢(xún)優(yōu)化器在生成各種執(zhí)行計(jì)劃之前,得先從統(tǒng)計(jì)信息中取得相關(guān)數(shù)據(jù),這樣才能估算每步操作所涉及到的記錄數(shù),而這個(gè)相關(guān)數(shù)據(jù)就是cardinality。簡(jiǎn)單來(lái)說(shuō),就是每個(gè)值在每個(gè)字段中的唯一值分布狀態(tài)。
比如表t1有100行記錄,其中一列為f1。f1中唯一值的個(gè)數(shù)可以是100個(gè),也可以是1個(gè),當(dāng)然也可以是1到100之間的任何一個(gè)數(shù)字。這里唯一值越的多少,就是這個(gè)列的可選擇基數(shù)。
那看到這里我們就明白了,為什么要在基數(shù)高的字段上建立索引,而基數(shù)低的的字段建立索引反而沒(méi)有全表掃描來(lái)的快。當(dāng)然這個(gè)只是一方面,至于更深入的探討就不在我這篇探討的范圍了。
概念二,關(guān)于HINT的使用。
這里我來(lái)說(shuō)下HINT是什么,在什么時(shí)候用。
HINT簡(jiǎn)單來(lái)說(shuō)就是在某些特定的場(chǎng)景下人工協(xié)助MySQL優(yōu)化器的工作,使她生成最優(yōu)的執(zhí)行計(jì)劃。一般來(lái)說(shuō),優(yōu)化器的執(zhí)行計(jì)劃都是最優(yōu)化的,不過(guò)在某些特定場(chǎng)景下,執(zhí)行計(jì)劃可能不是最優(yōu)化。
比如:表t1經(jīng)過(guò)大量的頻繁更新操作,(UPDATE,DELETE,INSERT),cardinality已經(jīng)很不準(zhǔn)確了,這時(shí)候剛好執(zhí)行了一條SQL,那么有可能這條SQL的執(zhí)行計(jì)劃就不是最優(yōu)的。為什么說(shuō)有可能呢?
來(lái)看下具體演示
譬如,以下兩條SQL,
A:
select * from t1 where f1 = 20;
B:
select * from t1 where f1 = 30;
如果f1的值剛好頻繁更新的值為30,并且沒(méi)有達(dá)到MySQL自動(dòng)更新cardinality值的臨界值或者說(shuō)用戶(hù)設(shè)置了手動(dòng)更新又或者用戶(hù)減少了sample page等等,那么對(duì)這兩條語(yǔ)句來(lái)說(shuō),可能不準(zhǔn)確的就是B了。
這里順帶說(shuō)下,MySQL提供了自動(dòng)更新和手動(dòng)更新表cardinality值的方法,因篇幅有限,需要的可以查閱手冊(cè)。
那回到正題上,MySQL 8.0 帶來(lái)了幾個(gè)HINT,我今天就舉個(gè)index_merge的例子。
示例表結(jié)構(gòu):
mysql desc t1;+------------+--------------+------+-----+---------+----------------+| Field ? ? ?| Type ? ? ? ? | Null | Key | Default | Extra ? ? ? ? ?|+------------+--------------+------+-----+---------+----------------+| id ? ? ? ? | int(11) ? ? ?| NO ? | PRI | NULL ? ?| auto_increment || rank1 ? ? ?| int(11) ? ? ?| YES ?| MUL | NULL ? ?| ? ? ? ? ? ? ? ?|| rank2 ? ? ?| int(11) ? ? ?| YES ?| MUL | NULL ? ?| ? ? ? ? ? ? ? ?|| log_time ? | datetime ? ? | YES ?| MUL | NULL ? ?| ? ? ? ? ? ? ? ?|| prefix_uid | varchar(100) | YES ?| ? ? | NULL ? ?| ? ? ? ? ? ? ? ?|| desc1 ? ? ?| text ? ? ? ? | YES ?| ? ? | NULL ? ?| ? ? ? ? ? ? ? ?|| rank3 ? ? ?| int(11) ? ? ?| YES ?| MUL | NULL ? ?| ? ? ? ? ? ? ? ?|+------------+--------------+------+-----+---------+----------------+7 rows in set (0.00 sec)
表記錄數(shù):
mysql select count(*) from t1;+----------+| count(*) |+----------+| ? ?32768 |+----------+1 row in set (0.01 sec)
這里我們兩條經(jīng)典的SQL:
SQL C:
select * from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;
SQL D:
select * from t1 where rank1 =100 ?and rank2 =100 ?and rank3 =100;
表t1實(shí)際上在rank1,rank2,rank3三列上分別有一個(gè)二級(jí)索引。
那我們來(lái)看SQL C的查詢(xún)計(jì)劃。
顯然,沒(méi)有用到任何索引,掃描的行數(shù)為32034,cost為3243.65。
mysql explain ?format=json select * from t1 ?where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: { ?"query_block": { ? ?"select_id": 1, ? ?"cost_info": { ? ? ?"query_cost": "3243.65" ? ?}, ? ?"table": { ? ? ?"table_name": "t1", ? ? ?"access_type": "ALL", ? ? ?"possible_keys": [ ? ? ? ?"idx_rank1", ? ? ? ?"idx_rank2", ? ? ? ?"idx_rank3" ? ? ?], ? ? ?"rows_examined_per_scan": 32034, ? ? ?"rows_produced_per_join": 115, ? ? ?"filtered": "0.36", ? ? ?"cost_info": { ? ? ? ?"read_cost": "3232.07", ? ? ? ?"eval_cost": "11.58", ? ? ? ?"prefix_cost": "3243.65", ? ? ? ?"data_read_per_join": "49K" ? ? ?}, ? ? ?"used_columns": [ ? ? ? ?"id", ? ? ? ?"rank1", ? ? ? ?"rank2", ? ? ? ?"log_time", ? ? ? ?"prefix_uid", ? ? ? ?"desc1", ? ? ? ?"rank3" ? ? ?], ? ? ?"attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))" ? ?} ?}}1 row in set, 1 warning (0.00 sec)
我們加上hint給相同的查詢(xún),再次看看查詢(xún)計(jì)劃。
這個(gè)時(shí)候用到了index_merge,union了三個(gè)列。掃描的行數(shù)為1103,cost為441.09,明顯比之前的快了好幾倍。
mysql explain ?format=json select /*+ index_merge(t1) */ * from t1 ?where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: { ?"query_block": { ? ?"select_id": 1, ? ?"cost_info": { ? ? ?"query_cost": "441.09" ? ?}, ? ?"table": { ? ? ?"table_name": "t1", ? ? ?"access_type": "index_merge", ? ? ?"possible_keys": [ ? ? ? ?"idx_rank1", ? ? ? ?"idx_rank2", ? ? ? ?"idx_rank3" ? ? ?], ? ? ?"key": "union(idx_rank1,idx_rank2,idx_rank3)", ? ? ?"key_length": "5,5,5", ? ? ?"rows_examined_per_scan": 1103, ? ? ?"rows_produced_per_join": 1103, ? ? ?"filtered": "100.00", ? ? ?"cost_info": { ? ? ? ?"read_cost": "330.79", ? ? ? ?"eval_cost": "110.30", ? ? ? ?"prefix_cost": "441.09", ? ? ? ?"data_read_per_join": "473K" ? ? ?}, ? ? ?"used_columns": [ ? ? ? ?"id", ? ? ? ?"rank1", ? ? ? ?"rank2", ? ? ? ?"log_time", ? ? ? ?"prefix_uid", ? ? ? ?"desc1", ? ? ? ?"rank3" ? ? ?], ? ? ?"attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))" ? ?} ?}}1 row in set, 1 warning (0.00 sec)
我們?cè)倏聪耂QL D的計(jì)劃:
不加HINT,
mysql explain format=json select * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: { ?"query_block": { ? ?"select_id": 1, ? ?"cost_info": { ? ? ?"query_cost": "534.34" ? ?}, ? ?"table": { ? ? ?"table_name": "t1", ? ? ?"access_type": "ref", ? ? ?"possible_keys": [ ? ? ? ?"idx_rank1", ? ? ? ?"idx_rank2", ? ? ? ?"idx_rank3" ? ? ?], ? ? ?"key": "idx_rank1", ? ? ?"used_key_parts": [ ? ? ? ?"rank1" ? ? ?], ? ? ?"key_length": "5", ? ? ?"ref": [ ? ? ? ?"const" ? ? ?], ? ? ?"rows_examined_per_scan": 555, ? ? ?"rows_produced_per_join": 0, ? ? ?"filtered": "0.07", ? ? ?"cost_info": { ? ? ? ?"read_cost": "478.84", ? ? ? ?"eval_cost": "0.04", ? ? ? ?"prefix_cost": "534.34", ? ? ? ?"data_read_per_join": "176" ? ? ?}, ? ? ?"used_columns": [ ? ? ? ?"id", ? ? ? ?"rank1", ? ? ? ?"rank2", ? ? ? ?"log_time", ? ? ? ?"prefix_uid", ? ? ? ?"desc1", ? ? ? ?"rank3" ? ? ?], ? ? ?"attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100))" ? ?} ?}}1 row in set, 1 warning (0.00 sec)
加了HINT,
mysql explain format=json select /*+ index_merge(t1)*/ * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: { ?"query_block": { ? ?"select_id": 1, ? ?"cost_info": { ? ? ?"query_cost": "5.23" ? ?}, ? ?"table": { ? ? ?"table_name": "t1", ? ? ?"access_type": "index_merge", ? ? ?"possible_keys": [ ? ? ? ?"idx_rank1", ? ? ? ?"idx_rank2", ? ? ? ?"idx_rank3" ? ? ?], ? ? ?"key": "intersect(idx_rank1,idx_rank2,idx_rank3)", ? ? ?"key_length": "5,5,5", ? ? ?"rows_examined_per_scan": 1, ? ? ?"rows_produced_per_join": 1, ? ? ?"filtered": "100.00", ? ? ?"cost_info": { ? ? ? ?"read_cost": "5.13", ? ? ? ?"eval_cost": "0.10", ? ? ? ?"prefix_cost": "5.23", ? ? ? ?"data_read_per_join": "440" ? ? ?}, ? ? ?"used_columns": [ ? ? ? ?"id", ? ? ? ?"rank1", ? ? ? ?"rank2", ? ? ? ?"log_time", ? ? ? ?"prefix_uid", ? ? ? ?"desc1", ? ? ? ?"rank3" ? ? ?], ? ? ?"attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100) and (`ytt`.`t1`.`rank1` = 100))" ? ?} ?}}1 row in set, 1 warning (0.00 sec)
對(duì)比下以上兩個(gè),加了HINT的比不加HINT的cost小了100倍。
總結(jié)下,就是說(shuō)表的cardinality值影響這張的查詢(xún)計(jì)劃,如果這個(gè)值沒(méi)有正常更新的話,就需要手工加HINT了。相信MySQL未來(lái)的版本會(huì)帶來(lái)更多的HINT。
這個(gè)主鍵ID其實(shí)已經(jīng)是有建立了索引的了,而在IN查詢(xún)當(dāng)中并沒(méi)有用到而已,其實(shí)你可以試試IN里的id少些時(shí),是會(huì)用到索引的,但當(dāng)IN里的id占據(jù)全表的大部分?jǐn)?shù)據(jù)量時(shí),mysql采用的時(shí)全表掃描。在這個(gè)時(shí)候可以考慮:1.split返回臨時(shí)表進(jìn)行表連接,2.使用緩存遍歷
你這涉及到union all,or 和in 及索引字段的,,,,
1、對(duì)于索引列來(lái)最好使用union all,因復(fù)雜的查詢(xún)【包含運(yùn)算等】將使or、in放棄索引而全表掃描,除非你能確定or、in會(huì)使用索引。
2、對(duì)于只有非索引字段來(lái)說(shuō)你就老老實(shí)實(shí)的用or 或者in,因?yàn)?非索引字段本來(lái)要全表掃描而union all 只成倍增加表掃描的次數(shù)。
3、對(duì)于及有索引字段【索引字段有效】又包含非索引字段來(lái)時(shí),按理你也使用or 、in或者union all 都可以,但是我推薦使用or、in。
上面都說(shuō)的是單表的情況,所以你這個(gè)問(wèn)題你給出語(yǔ)句信息,
并不能簡(jiǎn)單的說(shuō)誰(shuí)比in快的,,,,要看索引字段情況的
查詢(xún)一張表的數(shù)據(jù)是否存在于另一張表中
第一寫(xiě)法就是用in或者not in
例如
優(yōu)缺點(diǎn)
網(wǎng)站名稱(chēng):mysql怎么優(yōu)化in mysql如何調(diào)優(yōu)
網(wǎng)站URL:http://vcdvsql.cn/article22/heppcc.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供外貿(mào)網(wǎng)站建設(shè)、面包屑導(dǎo)航、營(yíng)銷(xiāo)型網(wǎng)站建設(shè)、靜態(tài)網(wǎng)站、網(wǎng)站收錄、Google
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶(hù)投稿、用戶(hù)轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)