這篇文章給大家分享的是有關python中opencv圖像如何處理 的內容。小編覺得挺實用的,因此分享給大家做個參考。一起跟隨小編過來看看吧。
創新互聯專業為企業提供桐梓網站建設、桐梓做網站、桐梓網站設計、桐梓網站制作等企業網站建設、網頁設計與制作、桐梓企業網站模板建站服務,10多年桐梓做網站經驗,不只是建網站,更提供有價值的思路和整體網絡服務。圖像素描特效主要經過以下幾個步驟:
調用cv.cvtColor()函數將彩色圖像灰度化處理;
通過cv.GaussianBlur()函數實現高斯濾波降噪;
邊緣檢測采用Canny算子實現;
最后通過cv.threshold()反二進制閾值化處理實現素描特效。
#coding:utf-8 import cv2 as cv import numpy as np #讀取原始圖像 img = cv.imread('d:/paojie.png') #圖像灰度處理 gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY) #高斯濾波降噪 gaussian = cv.GaussianBlur(gray, (5,5), 0) #Canny算子 canny = cv.Canny(gaussian, 50, 150) #閾值化處理 ret, result = cv.threshold(canny, 0, 255, cv.THRESH_BINARY_INV+cv.THRESH_OTSU) #顯示圖像 #cv.imshow('src', img) #cv.imshow('result', result) cv.imshow('result',np.vstack((gray,result))) cv.waitKey() cv.destroyAllWindows()
圖像懷舊特效
懷舊特效是將圖像的RGB三個分量分別按照一定比例進行處理的結果,其懷舊公式如下所示:
#coding:utf-8 import cv2 as cv import numpy as np #讀取原始圖像 img = cv.imread('d:/paojie.png') #獲取圖像行和列 rows, cols = img.shape[:2] #新建目標圖像 dst = np.zeros((rows, cols, 3), dtype="uint8") #圖像懷舊特效 for i in range(rows): for j in range(cols): B = 0.272*img[i,j][2] + 0.534*img[i,j][1] + 0.131*img[i,j][0] G = 0.349*img[i,j][2] + 0.686*img[i,j][1] + 0.168*img[i,j][0] R = 0.393*img[i,j][2] + 0.769*img[i,j][1] + 0.189*img[i,j][0] if B>255: B = 255 if G>255: G = 255 if R>255: R = 255 dst[i,j] = np.uint8((B, G, R)) #顯示圖像 cv.imshow('result',np.vstack((img,dst))) cv.waitKey() cv.destroyAllWindows()
圖像光照特效是指圖像存在一個類似于燈光的光暈特效,圖像像素值圍繞光照中心點呈圓形范圍內的增強。
python實現代碼主要是通過雙層循環遍歷圖像的各像素點,尋找圖像的中心點,再通過計算當前點到光照中心的距離(平面坐標系中兩點之間的距離),判斷該距離與圖像中心圓半徑的大小關系,中心圓范圍內的圖像灰度值增強,范圍外的圖像灰度值保留,并結合邊界范圍判斷生成最終的光照效果。
#coding:utf-8 import cv2 as cv import math import numpy as np #讀取原始圖像 img = cv.imread('d:/paojie.png') #獲取圖像行和列 rows, cols = img.shape[:2] #設置中心點和光照半徑 centerX = rows / 2 - 20 centerY = cols / 2 + 20 radius = min(centerX, centerY) #設置光照強度 strength = 100 #新建目標圖像 dst = np.zeros((rows, cols, 3), dtype="uint8") #圖像光照特效 for i in range(rows): for j in range(cols): #計算當前點到光照中心距離(平面坐標系中兩點之間的距離) distance = math.pow((centerY-j), 2) + math.pow((centerX-i), 2) #獲取原始圖像 B = img[i,j][0] G = img[i,j][1] R = img[i,j][2] if (distance < radius * radius): #按照距離大小計算增強的光照值 result = (int)(strength*( 1.0 - math.sqrt(distance) / radius )) B = img[i,j][0] + result G = img[i,j][1] + result R = img[i,j][2] + result #判斷邊界 防止越界 B = min(255, max(0, B)) G = min(255, max(0, G)) R = min(255, max(0, R)) dst[i,j] = np.uint8((B, G, R)) else: dst[i,j] = np.uint8((B, G, R)) #顯示圖像 cv.imshow('result',np.vstack((img,dst))) cv.waitKey() cv.destroyAllWindows()
流年是用來形容如水般流逝的光陰或年華,圖像處理中特指將原圖像轉換為具有時代感或歲月沉淀的特效。python實現代碼如下,它將原始圖像的藍色(B)通道的像素值開根號,再乘以一個權重參數,產生最終的流年效果。
#coding:utf-8 import cv2 as cv import math import numpy as np #讀取原始圖像 img = cv.imread('d:/paojie.png') #獲取圖像行和列 rows, cols = img.shape[:2] #新建目標圖像 dst = np.zeros((rows, cols, 3), dtype="uint8") #圖像流年特效 for i in range(rows): for j in range(cols): #B通道的數值開平方乘以參數12 B = math.sqrt(img[i,j][0]) * 12 G = img[i,j][1] R = img[i,j][2] if B>255: B = 255 dst[i,j] = np.uint8((B, G, R)) #顯示圖像 cv.imshow('result',np.vstack((img,dst))) cv.waitKey() cv.destroyAllWindows()
濾鏡主要是用來實現圖像的各種特殊效果,它在Photoshop中具有非常神奇的作用。濾鏡通常需要同通道、圖層等聯合使用,才能取得很好藝術效果。本小節將講述一種基于顏色查找表(Look up Table)的濾鏡處理方法,它通過將每一個原始顏色進行轉換之后得到新的顏色。比如,原始圖像的某像素點為紅色(R-255, G-0, B-0),進行轉換之后變為綠色(R-0, G-255, B-0),之后所有是紅色的地方都會被自動轉換為綠色,而顏色查找表就是將所有的顏色進行一次(矩陣)轉換,很多的濾鏡功能就是提供了這么一個轉換的矩陣,在原始色彩的基礎上進行顏色的轉換。
假設現在存在一張新的濾鏡顏色查找表,如圖所示,它是一張512×512大小,包含各像素顏色分布的圖像。下面這張圖片另存為本地,即可直接用于圖像濾鏡處理。
#coding:utf-8 import cv2 as cv import numpy as np #獲取濾鏡顏色 def getBGR(img, table, i, j): #獲取圖像顏色 b, g, r = img[i][j] #計算標準顏色表中顏色的位置坐標 x = int(g/4 + int(b/32) * 63) y = int(r/4 + int((b%32) / 4) * 63) #返回濾鏡顏色表中對應的顏色 return lj_map[x][y] #讀取原始圖像 img = cv.imread('d:/paojie.png') lj_map = cv.imread('lvjing.png') #獲取圖像行和列 rows, cols = img.shape[:2] #新建目標圖像 dst = np.zeros((rows, cols, 3), dtype="uint8") #循環設置濾鏡顏色 for i in range(rows): for j in range(cols): dst[i][j] = getBGR(img, lj_map, i, j) #顯示圖像 cv.imshow('result',np.vstack((img,dst))) cv.waitKey() cv.destroyAllWindows()
感謝各位的閱讀!關于python中opencv圖像如何處理 就分享到這里了,希望以上內容可以對大家有一定的幫助,讓大家可以學到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到吧!
新聞標題:python中opencv圖像如何處理-創新互聯
轉載來源:http://vcdvsql.cn/article6/dshcog.html
成都網站建設公司_創新互聯,為您提供網站制作、網站改版、關鍵詞優化、小程序開發、微信公眾號、域名注冊
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯