遞歸的思想主要是能夠重復某些動作,比如簡單的階乘,次方,回溯中的八皇后,數獨,還有漢諾塔,分形。
創新互聯建站堅持“要么做到,要么別承諾”的工作理念,服務領域包括:網站建設、成都網站建設、企業官網、英文網站、手機端網站、網站推廣等服務,滿足客戶于互聯網時代的晉州網站設計、移動媒體設計的需求,幫助企業找到有效的互聯網解決方案。努力成為您成熟可靠的網絡建設合作伙伴!
由于堆棧的機制,一般的遞歸可以保留某些變量在歷史狀態中,比如你提到的return x * power..., 但是某些或許龐大的問題或者是深度過大的問題就需要盡量避免遞歸,因為可能會棧溢出。還有一個問題是~python不支持尾遞歸優化!!!!所以~還是盡量避免遞歸的出現。
def power(x, n)
if n 0:
return 1
return x * power(x, n - 1)
power(3, 3)
3 * power(3, 2)
3 * (3 * power(3, 1))
3 * (3 * (3 * power(3, 0)))
3 * (3 * (3 * 1)) 這里n = 0, return 1
3 * (3 * 3)
3 * 9
27
當函數形參n=0的時候,開始回退~直到第一次調用power結束。
lambda不好寫,寫了前兩個,把-2改為-7,改成-7后,我試過x必須大于4。-2時x可以從1開始
#遞歸
def?power(n,?x):
if?abs(1/pow(n,?x))abs(pow(10,?-2)):
return?0#回歸條件
else:
m?=?n?+?1#遞歸因子
if(n%2==1):
return?1/pow(n,?x)+power(m,?x)#求和奇正
else:
return?-1/pow(n,?x)+power(m,?x)#求和偶負
def?power2(n,?x):
sum?=?0
while(1/pow(n,x)abs(pow(10,?-2))):
if?(n?%?2?==?1):
sum+=?1?/?pow(n,?x)
else:
sum+=-1?/?pow(n,?x)
n?+=?1??#?遞增
return?sum
if?__name__?==?"__main__":
x?=?input("請輸入冪數")
x?=?int(x)
n?=?1
sum?=?power(n,?x)
print(sum)
n=1
sum?=?power2(n,?x)
print(sum)
例如上面的例子,實現一個整形集合的累加。假設lst = [1,2,3,4,5],實現累加的方式有很多:
第一種:用sum函數。
sum(lst)
第二種:循環方式。
def customer_sum(lst):
result = 0
for x in lst:
result+=x
return result
def customer_sum(lst):
result = 0
while lst:
temp = lst.pop(0)
result+=temp
return result
if name ==" main ":
lst = [1,2,3,4,5]
print customer_sum(lst)
第三種:遞推求和
def add(lst,result):
if lst:
temp = lst.pop(0)
temp+=result
return add(lst,temp)
else:
return result
if name ==" main ":
lst = [1,2,3,4,5]
print add(lst,0)
第四種:reduce方式
lst = [1,2,3,4,5]
print reduce(lambda x,y:x+y,lst)
lst = [1,2,3,4,5]
print reduce(lambda x,y:x+y,lst,0)
def add(x,y):
return x+y
print reduce(add, lst)
def add(x,y):
return x+y
print reduce(add, lst,0)
有一個序列集合,例如[1,1,2,3,2,3,3,5,6,7,7,6,5,5,5],統計這個集合所有鍵的重復個數,例如1出現了兩次,2出現了兩次等。大致的思路就是用字典存儲,元素就是字典的key,出現的次數就是字典的value。方法依然很多
第一種:for循環判斷
def statistics(lst):
dic = {}
for k in lst:
if not k in dic:
dic[k] = 1
else:
dic[k] +=1
return dic
lst = [1,1,2,3,2,3,3,5,6,7,7,6,5,5,5]
print(statistics(lst))
第二種:比較取巧的,先把列表用set方式去重,然后用列表的count方法
def statistics2(lst):
m = set(lst)
dic = {}
for x in m:
dic[x] = lst.count(x)
lst = [1,1,2,3,2,3,3,5,6,7,7,6,5,5,5]
print statistics2(lst)
第三種:用reduce方式
def statistics(dic,k):
if not k in dic:
dic[k] = 1
else:
dic[k] +=1
return dic
lst = [1,1,2,3,2,3,3,5,6,7,7,6,5,5,5]
print reduce(statistics,lst,{})
或者
d = {}
d.extend(lst)
print reduce(statistics,d)
通過上面的例子發現,凡是要對一個集合進行操作的,并且要有一個統計結果的,能夠用循環或者遞歸方式解決的問題,一般情況下都可以用reduce方式實現。
函數的遞歸調用
遞歸問題是一個說簡單也簡單,說難也有點難理解的問題.我想非常有必要對其做一個總結.
首先理解一下遞歸的定義,遞歸就是直接或間接的調用自身.而至于什么時候要用到遞歸,遞歸和非遞歸又有那些區別?又是一個不太容易掌握的問題,更難的是對于遞歸調用的理解.下面我們就從程序+圖形的角度對遞歸做一個全面的闡述.
我們從常見到的遞歸問題開始:
1 階層函數
#include iostream
using namespace std;
int factorial(int n)
{
if (n == 0)
{
return 1;
}
else
{
int result = factorial(n-1);
return n * result;
}
}
int main()
{
int x = factorial(3);
cout x endl;
return 0;
}
這是一個遞歸求階層函數的實現。很多朋友只是知道該這么實現的,也清楚它是通過不斷的遞歸調用求出的結果.但他們有些不清楚中間發生了些什么.下面我們用圖對此做一個清楚的流程:
根據上面這個圖,大家可以很清楚的看出來這個函數的執行流程。我們的階層函數factorial被調用了4次.并且我們可以看出在調用后面的調用中,前面的調用并不退出。他們同時存在內存中。可見這是一件很浪費資源的事情。我們該次的參數是3.如果我們傳遞10000呢。那結果就可想而知了.肯定是溢出了.就用int型來接收結果別說10000,100就會產生溢出.即使不溢出我想那肯定也是見很浪費資源的事情.我們可以做一個粗略的估計:每次函數調用就單變量所需的內存為:兩個int型變量.n和result.在32位機器上占8B.那么10000就需要10001次函數調用.共需10001*8/1024 = 78KB.這只是變量所需的內存空間.其它的函數調用時函數入口地址等仍也需要占用內存空間。可見遞歸調用產生了一個不小的開銷.
2 斐波那契數列
int Fib(int n)
{
if (n = 1)
{
return n;
}
else
{
return Fib(n-1) + Fib(n-2);
}
}
這個函數遞歸與上面的那個有些不同.每次調用函數都會引起另外兩次的調用.最后將結果逐級返回.
我們可以看出這個遞歸函數同樣在調用后買的函數時,前面的不退出而是在等待后面的結果,最后求出總結果。這就是遞歸.
3
#include iostream
using namespace std;
void recursiveFunction1(int num)
{
if (num 5)
{
cout num endl;
recursiveFunction1(num+1);
}
}
void recursiveFunction2(int num)
{
if (num 5)
{
recursiveFunction2(num+1);
cout num endl;
}
}
int main()
{
recursiveFunction1(0);
recursiveFunction2(0);
return 0;
}
運行結果:
1
2
3
4
4
3
2
1
該程序中有兩個遞歸函數。傳遞同樣的參數,但他們的輸出結果剛好相反。理解這兩個函數的調用過程可以很好的幫助我們理解遞歸:
我想能夠把上面三個函數的遞歸調用過程理解了,你已經把遞歸調用理解的差不多了.并且從上面的遞歸調用中我們可以總結出遞歸的一個規律:他是逐級的調用,而在函數結束的時候是從最后面往前反序的結束.這種方式是很占用資源,也很費時的。但是有的時候使用遞歸寫出來的程序很容易理解,很易讀.
為什么使用遞歸:
1 有時候使用遞歸寫出來的程序很容易理解,很易讀.
2 有些問題只有遞歸能夠解決.非遞歸的方法無法實現.如:漢諾塔.
遞歸的條件:
并不是說所有的問題都可以使用遞歸解決,他必須的滿足一定的條件。即有一個出口點.也就是說當滿足一定條件時,程序可以結束,從而完成遞歸調用,否則就陷入了無限的遞歸調用之中了.并且這個條件還要是可達到的.
遞歸有哪些優點:
易讀,容易理解,代碼一般比較短.
遞歸有哪些缺點:
占用內存資源多,費時,效率低下.
因此在我們寫程序的時候不要輕易的使用遞歸,雖然他有他的優點,但是我們要在易讀性和空間,效率上多做權衡.一般情況下我們還是使用非遞歸的方法解決問題.若一個算法非遞歸解法非常難于理解。我們使用遞歸也未嘗不可.如:二叉樹的遍歷算法.非遞歸的算法很難與理解.而相比遞歸算法就容易理解很多.
對于遞歸調用的問題,我們在前一段時間寫圖形學程序時,其中有一個四連同填充算法就是使用遞歸的方法。結果當要填充的圖形稍微大一些時,程序就自動關閉了.這不是一個人的問題,所有人寫出來的都是這個問題.當時我們給與的解釋就是堆棧溢出。就多次遞歸調用占用太多的內存資源致使堆棧溢出,程序沒有內存資源執行下去,從而被操作系統強制關閉了.這是一個真真切切的例子。所以我們在使用遞歸的時候需要權衡再三.
首先我們要了解一下什么是遞歸。
遞歸法,遞歸法就是利用上一個或者上幾個狀態來求取當前狀態的值(個人看法)。也可以說成函數自己調用自己的一種解決問題的策略。因此遞歸法通常是依托函數來實現的,遞歸函數總是會有一個出口,我們在解決遞歸問題時,只需要找出遞歸的關系式以及遞歸函數的出口(這兩個可以說是遞歸函數的核心了)。下面我將在這里舉求斐波那契值的例子帶領著大家具體的實踐一下遞歸法。
很顯然遞歸函數的遞推式是:fib(n) = fib(n-1)+fib(n-2)。
遞歸函數的出口是當n為1時返回1,當n為0時返回0。
最后遞歸函數的核心代碼就可以寫出了:
然后總的代碼就是:
具體思路如下:
語句 return fib(n-1)+fib(n-2)的意思就是向前求斐波那契值,直到n-1=1,n-2=0
因為只有第1個和第0個斐波那契值是確定的
例:
當n=3時
第一次調用函數fib會執行第三條語句(因為n1)這樣求回返回fib(2)+fib(1)
第二次調用函數時,因為21所有會返回fib(1)+fib(0);因為1不大于1,所以調用函數時
會執行第二條語句返回1值。
第三次調用函數,會執行第一和第二條語句,依次返回0和1從而求得fib(2)
fib(3)=fib(2)+fib(1)
fib(2)=fib(1)+fib(0)
即fib(3)=fib(1)+fib(0)+fib(1)=2*fib(1)+fib(0)
文章標題:python遞推函數,遞推公式編程
文章分享:http://vcdvsql.cn/article32/heopsc.html
成都網站建設公司_創新互聯,為您提供ChatGPT、手機網站建設、服務器托管、Google、標簽優化、搜索引擎優化
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯